Читаем Эволюция и прогресс полностью

Сдвиг величины логарифма радиуса раковины (ΔlnR), сопровождающий видообразование, очевидно, возникает как результат серии фиксаций благоприятных мутаций. Скорость фиксации каждой такой мутации определяется при прочих равных условиях селективным выигрышем, который получает ее носитель (см. (3.32)). Пусть мы имеем два класса мутаций, любая из которых укрепляет стенку раковины в одинаковой степени, но мутации первого класса утяжеляют раковину, а мутации второго класса — нет. Очевидно, что движущий отбор отдаст предпочтение мутациям второго класса из-за более высокого коэффициента селекции. Наиболее эффективный способ упрочить раковину, не изменяя массы (см. гл. 5), состоит в удлинении лопастной линии за счет увеличения числа ее изгибов, т. е. за счет повышения сложности.

Следовательно, виды аммоноидей с более сложной сутурой имеют больше шансов на филетическое выживание, когда среда «требует» изменения размеров раковины. Данное обстоятельство способно обусловить макроэволюционную тенденцию к повышению мобильности лопастной линии. Мы регистрируем эту тенденцию как постепенное увеличение в ходе исторического развития среднего значения и размаха видовых распределений по сложности сутуры аммоноидей. В конце концов мобилизующий отбор мог бы привести к снабжению каждого вида сверхгибкой лопастной линией, способной адекватно изменять степень своей изогнутости при любом требовании среды к изменению величины и прочности раковины.

Рис. 30. Динамика изменения среднеквадратического отклонения (сигмы) видовых распределений аммоноидей по размеру раковины σlnR и сложности лопастной линии σz

.


Теперь попробуем оценить величину межвидовой изменчивости по сложности сутуры в филетической группе, где все виды обладают сверхгибкой лопастной линией. Площадь боковой поверхности раковины растет пропорционально квадрату ее радиуса и по тому же закону должна возрастать длина сверхгибкой сутуры (l). В то же время длина контура поперечного среза раковинной трубки (l0) пропорциональна ее радиусу (R), поэтому отношение l/l0

тоже должно быть пропорционально радиусу, т. е.

l/l0 = kR, (6.3)

где k — коэффициент пропорциональности. В логарифмической форме равенство (6.3) преобразуется в

ln(l/l0) = lnR

+ lnk. (6.4)

Заметим, что в левой части этого уравнения стоит сложность сверхгибкой сутуры, а член lnk в правой части — константа. Изменчивость константы равна нулю, поэтому изменчивость сложности сверхгибкой сутуры должна равняться изменчивости логарифма радиуса раковины. Выбрав в качестве меры межвидовой изменчивости сигму, для сверхгибкой сутуры должны иметь

σz = σlnR. <6.5>

Таким образом, в пределе, когда требования к прочности раковины стали бы полностью удовлетворяться изменением длины сутуры, межвидовая изменчивость по ее сложности сравнялась бы с межвидовой изменчивостью по логарифму радиуса.

Наши данные (рис. 30) показывают, что в ходе эволюции аммоноидей σz как бы стремится сравняться с σlnR, однако эта «цель» не достигается даже аммонитами юры и мела. По-видимому, какая-то часть требований среды к укреплению стенки раковины продолжала удовлетворяться за счет других средств. Тем не менее согласованное изменение сигмы обеих величин в течение последних 130 миллионов лет истории аммоноидей ярко демонстрирует, что технические возможности генетической системы, мобилизующей сутуру, фактически были доведены до предела.

Прогресс в накоплении знаний

Тезис «вид приспособлен к среде своего обитания» фактически банален, поскольку, раз мы имеем дело с видом, значит, он существует, а раз существует, значит, приспособлен. Можно сконструировать еще один тезис: «вид располагает знанием о среде своего обитания». Хотя это звучит несколько антропоморфно, формулировка не станет лучше, если мы заменим слово «знание» словом «информация».

Можно различать два рода знаний вида о внешнем мире: знание видом собственной экологической ниши и знание им соседних ниш. Хотя утверждение о знаниях второго рода звучит несколько фантастично, однако это и есть то, что мы ранее назвали адаптируемостью. Знания первого рода воплощены в морфологии типичной особи, чьи рабочие структуры способны развивать мощность, достаточную для неопределенно долгого существования вида в одной и той же экологической нише. При сравнении гомологичных структур у разных видов можно заметить огромные различия в уровне их развития. Тем не менее, во всех случаях этот уровень (каким бы он нам ни представлялся), по-видимому, вид устраивает, а развивать орган сверх необходимости означало бы пустую трату средств, которые можно было бы направить на производство дополнительной биомассы. Природа как бы пытается снабдить организм рабочими структурами, способными развивать максимальную мощность при минимальных энергетических и информационных затратах. Заметим, что это чисто инженерная задача, и, как показывает наш практический опыт, при заданных материалах существует очень мало оптимальных решений (см. гл. 5).

Перейти на страницу:

Все книги серии Человек и окружающая среда

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг
1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное