Читаем Эволюция. Классические идеи в свете новых открытий полностью

Чтобы оценить эффективность работы сигнального каскада у 66 генно-модифицированных штаммов дрожжей, в их геномы был добавлен ген зеленого флуоресцирующего белка, соединенный с промотором, который реагирует на один из транскрипционных факторов, активируемых белком Fus3. В результате по силе свечения можно было определить силу реакции сигнального каскада на добавление в среду альфа-фактора. Регистрировались два параметра: «базовая» сила свечения, которая наблюдается до добавления альфа-фактора, и скорость, с которой свечение усиливается после добавления феромона.

Оказалось, что в десяти случаях из 66 добавление нового белка изменило поведение сигнального каскада. У одних штаммов изменился базовый уровень активности, у других — интенсивность реакции на феромон.

Но эти изменения теоретически могли быть вызваны не перекомбинированием доменов в добавленном белке, а просто тем, что какого-то домена в клетке стало больше. Чтобы исключить эту возможность, провели контрольные эксперименты. В клетки вставляли дополнительные копии целых генов и их усеченных, но работающих вариантов (кодирующих только один из доменов многодоменного белка). Эти манипуляции, однако, не повлияли на работу сигнального каскада. Значит, полученные в эксперименте новые признаки связаны именно с новыми свойствами белков, образованных путем перекомбинирования доменов.

Приводит ли более интенсивная работа сигнального каскада к реальному повышению половой активности? Чтобы это выяснить, исследователи смешивали модифицированные дрожжи с дикими дрожжами другого пола (альфа) и подсчитывали число успешных слияний. Оказалось, что те клетки, у которых скорость реагирования каскада на феромон увеличилась, действительно спариваются чаще, чем контрольные, и наоборот — те клетки, у которых чувствительность каскада снизилась, спариваются реже.

Рекордсменами оказались дрожжи с искусственным белком, состоящим из половинок Ste50 и Ste7, и с другим химерным белком, собранным из фрагментов Ste5 и Ste11. Эти «половые гиганты» спаривались втрое чаще, чем контрольные исходные дрожжи.

Для некоторых случаев удалось расшифровать молекулярные механизмы возникших изменений. Например, белок, собранный из регуляторного домена Ste5 и каталитического домена Ste11, создал новый «обходной» путь передачи сигнала от рецептора Ste2 к Fus3. Это заставляет клетку интенсивнее реагировать на феромон, что повышает вероятность спаривания.

Может ли повышение половой активности дрожжей, наблюдавшееся в эксперименте, быть полезным? Будет ли оно поддержано отбором, если такая мутация возникнет в природной популяции? Судя по тому, что мы знаем о действии отбора на склонность к сексу (см. главу 3), это возможно, особенно в неблагоприятных и переменчивых условиях. В эксперименте повышение половой активности ничуть не повредило здоровью подопытных клеток.

Такие исследования показывают, что перекомбинирование доменов может быть важным источником эволюционных новшеств — наряду с другими «крупномасштабными» мутациями, такими как дупликация генов и появление новых регуляторных участков ДНК. Важно, что перекомбинирование может приводить к мгновенному появлению новых признаков, тогда как дупликация генов создает новшества не сразу, а лишь после того, как две копии гена хоть немного «разойдутся» по своим функциям, накопив нуклеотидные замены.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже