—————
Комбинаторика, поставленная на поток
Большинство генов у эукариот состоит из кодирующих участков — экзонов
и некодирующих вставок между ними — интронов. Интроны — потомки мобильных генетических элементов, буйно расплодившихся в геномах ранних эукариот. Экзонно-интронная структура генов облегчает создание новых белков комбинаторным путем, хотя возникла она, конечно, не для этого. Тем не менее, раз уж так получилось и гены эукариот приобрели экзонно-интронную структуру, это открыло перед эволюцией интересные возможности.Интроны необходимо удалить, прежде чем синтезировать белок на основе инструкций, записанных в гене. Если этого не сделать, интроны начнут транслироваться, и вместо рабочего белка получится ерунда. Для удаления интронов из молекул матричных РНК (мРНК), считанных с гена, развился механизм сплайсинга
. Мобильные элементы — предки интронов — сами себя вырезали из мРНК. Это были «самосплайсирующиеся» элементы (такие и сейчас есть у некоторых прокариот). Если бы они этого не делали, зараженный ими геном стал бы нежизнеспособным, а вместе с ним погибли бы и они сами. У древних эукариот функция сплайсинга перешла от интронов к специальным молекулярным машинкам — сплайсосомам. В состав сплайсосом входят молекулы РНК — наследники тех частей древних самосплайсирующихся интронов, которые, собственно, и осуществляли самосплайсинг. Интроны, разумеется, должны содержать (и действительно содержат) в своей последовательности нуклеотидов специальные сигнальные участки, по которым сплайсосома распознает интрон и определяет, где у него конец и где начало — иначе интрон не может быть вырезан.С универсальной системой вырезания интронов у эукариот появилась возможность изготавливать новые белки путем альтернативного сплайсинга
. Так называют ситуацию, когда одна и та же молекула мРНК в зависимости от условий комбинируется (на генетическом жаргоне это звучит как «сплайсируется») по-разному. Например, в клетках печени из конкретной мРНК вырезаются только интроны, а в клетках мозга из нее же вместе с двумя соседними интронами вырезается и расположенный между ними экзон. Получается два разных белка, синтезируемых на основе одного и того же гена.Недавно выяснилось, что альтернативный сплайсинг чаще всего используется у самых сложных организмов, таких как наземные позвоночные, и особенно млекопитающие. Более того, оказалось, что у приматов — к которым мы имеем честь принадлежать — альтернативный сплайсинг развит в полтора-два раза сильнее, чем у других млекопитающих (
Именно поэтому у человека и других приматов разнообразие белков намного выше, чем у дрозофилы или червя
Альтернативный сплайсинг позволяет по-разному комбинировать экзоны одного и того же гена. При этом порядок экзонов не меняется: разница только в том, что одни экзоны могут быть выброшены вместе с интронами, а другие оставлены. В некоторых генах даже возникли целые наборы — «кассеты» альтернативных экзонов, причем в зрелую мРНК после сплайсинга попадает только один экзон из каждой кассеты. Об одном из таких генов (
Однако альтернативный сплайсинг не позволяет комбинировать экзоны, входящие в состав
У эукариот есть немало белков, скорее всего, возникших именно этим способом. Интересно, что они крайне неравномерно распределены по эволюционному дереву. Их очень много у животных, причем у всех — от губок до млекопитающих. У других эукариот (растений, грибов и протистов) их намного меньше. Функции большинства таких многодоменных белков животных связаны с поддержанием целостности организма (взаимодействие клеток, формирование тканей, прием и передача сигналов, формирование межклеточной среды и т. п.). Похоже, на ранних этапах эволюции животного царства был своеобразный бум формирования новых генов путем перекомбинирования экзонов (
—————