Читаем Эволюция Вселенной и происхождение жизни полностью

Конечно, сейчас мы знаем о Вселенной и ее структуре гораздо больше, чем знал Кант, и понимаем, что гравитация — намного более изощренный архитектор, чем можно было предполагать на основе простого ньютоновского закона обратных квадратов. Мы знаем, что доля обычного вещества, из которого состоят звезды, планеты и живые существа, крошечна по сравнению с темным веществом и темной энергией, играющими важную роль в эволюции расширяющейся Вселенной и в формировании галактик, этих гигантских звездных сооружений.

Тем не менее все же мы согласны с Кантом, что жизнь — это более сложное явление, чем даже огромное скопление галактик с тысячами его членов, каждый из которых состоит из 1-100 млрд звезд и планетных систем. В теле человека около 100 триллионов (= 10 14) клеток, в каждой из которых примерно столько же атомов. С мыслями об этом мы приступаем к последней части нашей книги, где обсудим происхождение планетных систем и вопросы астробиологии.

ЧАСТЬ IV ЖИЗНЬ ВО ВСЕЛЕННОЙ

Глава 28 Что такое жизнь?

Здесь и сейчас, спустя 14 млрд лет после загадочного рождения Вселенной, во внешней области рядовой галактики, в планетной системе, сформировавшейся 5 млрд лет назад вокруг типичной звезды, мы наблюдаем совершенно особое явление: поверхность одной из планет покрыта биосферой, то есть сложной сетью органических соединений, существующих в водной среде. Эти химические реакции в основном осуществляются за счет энергии, поступающей от звезды, и поддерживают все разнообразие живых существ — от одноклеточных микробов до крупных растений и животных. Они объединены в сложные экологические сообщества с многоступенчатой последовательностью преобразования энергии (пищевая цепь), которая эффективно переносит соединения углерода между окисленным и восстановленным состояниями. В частности, зеленые растения и водоросли путем фотосинтеза, использующего солнечный свет, превращают окисленный углерод (СO 2

) в восстановленные соединения углерода (сахара), которые используются в том числе и другими организмами в качестве источника химической энергии. Фотосинтез связывает большое количество углерода в органические соединения (биомассу), а дыхание животных и гниение органических веществ возвращает СO 2обратно в воздух. Эти реакции сильно повлияли на содержание двуокиси углерода в атмосфере и таким образом — на климат. В процессе фотосинтеза для восстановления используются протоны из молекул воды (Н 2O), при этом атмосфера планеты обеспечивается кислородом.

Жизнь и Вселенная.

Живые существа состоят из вполне обычных химических элементов — кислорода, углерода, водорода, азота, кальция, фосфора и др. (Врезка 12.1). Несмотря на это, жизнь сильно отличается от окружающего ее неодушевленного мира. Она основана на очень сложных химических соединениях, и в ней все время происходят сложные биохимические реакции, которые невозможны в неживой окружающей среде. Таким образом, жизнь стимулирует резкое увеличение порядка в своих структурах по сравнению с простой совокупностью составляющих ее атомов. Иными словами, она уменьшает энтропию в своих системах (Врезка 28.1). Может показаться, что жизнь нарушает второй закон термодинамики. Но это не так. Порядок создается за счет энергии окружающей среды и контролируется обширной внутренней информацией, содержащейся в сложных молекулярных структурах. Между живой системой и ее окружением нет равновесия.

Врезка 28.1. Энтропия.

По собственному опыту мы знаем, что многие вещи постепенно теряют свой налаженный порядок или структуру, а некоторые вообще превращаются в пыль. Второй закон термодинамики утверждает, что если физический процесс протекает без взаимодействия с внешним миром, то в такой замкнутой системе величина, называемая энтропией, всегда увеличивается. Это совсем не похоже на поведение полной энергии, которая в замкнутой системе сохраняется (согласно Первому закону термодинамики).

Энтропия характеризует уровень порядка: чем выше энтропия, тем больше беспорядка, хаоса. Можно также сказать, что энтропия в некоторой степени характеризует число отдельных единиц в системе: то, что вначале было одним целым, стремится к концу разделиться на части и достичь наиболее вероятного состояния. Кроме того, эта тенденция определяет направление стрелы времени в реальной жизни, тогда как в простой механике понятие о направлении времени не существует.

Для того чтобы ощутить рост энтропии, обычно рассматривают сосуд, заполненный газом. Предположим, что начальное состояние было совершенно невероятным: в какой-то момент времени все молекулы оказались на одной поло-вире сосуда, а вторая его половина была совершенно пустая. Очевидно, что после этого момента молекулы будет стремиться заполнить сосуд целиком, распределившись в нем однородно. Такая ситуация наиболее вероятна и соответствует максимальной энтропии.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже