С годами теория Нордстрёма-Клейна-Калуцы оказалась забыта. Но когда были открыты новые силы, физики задумались — а почему бы не описать все силы как явления кривизны пространства в более высоких измерениях? Это было сделано в теории супергравитации, которая связана с очень абстрактной и детально разработанной теорией струн. В ней утверждается, что вся материя и энергия состоят из необычайно коротких нитей, называемых струнами (вместо точечных частиц, которые обычно представляют), а также мембранных образований, называемых бранами. Заменяя точечные частицы струнами, можно объединить известные силы — электромагнитные, гравитационные, слабые и сильные ядерные. При таком подходе нет реальных сил, а только искривление пространства, которое проявляется в разных формах или влияниях («силах»).
До сих пор не существует окончательного варианта теории супергравитации; современные модели используют до десяти пространственных измерений (плюс время). Все измерения пространства, кроме трех, должно быть каким-то образом компактифицированы (упакованы) в крошечный объем, например закручены в семимерный шар размером в 10-32
см. Не нужно даже пытаться представить себе этот клубок измерений в нашем пространстве; все дополнительные измерения находятся вне нашего трехмерного мира.Несколько лет назад Савас Димопулос из Стэнфордского университета и его коллеги Нима Аркани-Хамед и Георгий Двали сделали смелое предположение: возможно, что некоторые из этих дополнительных измерений не так уж сильно скручены. Заметив, что нет экспериментальных фактов, ограничивающих эту возможность, они предположили, что дополнительные измерения могут быть относительно большими, радиусом до 1 мм, то есть размером с маковое зернышко.
В этой новой гипотезе о больших дополнительных измерениях скрыта возможность решения старой загадки. Почему гравитация намного слабее других сил? Хотя электромагнетизм, а также слабое и сильное взаимодействия по силе сравнимы друг с другом, все они гораздо мощнее гравитации: как гора в сравнении с фантастически малым размером, фигурирующим в теории струн. Чтобы понять этот гигантский пробел, Димопулос с коллегами предположили не только эти большие дополнительные измерения, но и что гравитация является единственной силой, проникающей во все эти измерения (например, фотон, несущий электромагнитную силу, не может «утечь» из нашего трехмерного пространства). Следовательно, гравитация не такая уж слабая. Просто мы ощущаем ее такой слабой, поскольку она существует во многих измерениях. Гравитация «разжижается» в этом огромном дополнительном пространстве, которого мы не чувствуем.
Итак, вы бегло познакомились с некоторыми сложными областями физики и получили представление о том, какие идеи вдохновляют современных физиков. «Многомерное пространство» звучит фантастически, но нужно помнить, что корни современной супергравитации и теории струн уходят в 1910-е годы, когда рождалась общая теория относительности.
Микрокосмос связан с очень малыми размерами. Диаметр протона равен примерно 10-12
мм, но он чудовищно велик по сравнению с пространственным масштабом 10-31 мм, присутствующим в теории супергравитации. А если мы поднимем взгляд к небу, то придется в степенях десятки заменить знак «-» на «+». Например, диаметр Солнца около 10+12 мм, а диаметр наблюдаемой части Вселенной около 10+30 мм. В этом смысле человеческие существа на шкале размеров располагаются между миром субатомных частиц и миром звезд и галактик.ЧАСТЬ III ВСЕЛЕННАЯ
Глава 19 Звезды: космические термоядерные реакторы
Теперь, овладев тайнами микромира элементарных частиц, мы можем вернуться к Большой Вселенной. Для начала обратимся к наиболее распространенным космическим объектам — звездам. Наше Солнце — типичная звезда; изучая Солнце, мы можем узнать многое о звездах. Но существуют разные типы звезд, и некоторые из них очень сильно отличаются от Солнца. Впрочем, именно эти различия помогают нам понять структуру звезд и физические процессы, определяющие их жизненный цикл. Начнем со спектров их излучения.