Читаем Эволюция Вселенной и происхождение жизни полностью

Рис. 16.9. Эксперимент по рассеянию, поставленный Гансом Гейгером (1882–1945) и Эрнстом Марсденом (1889–1970). Альфа-частицы рассеиваются в золотой фольге и затем ударяются в экран, покрытый сульфидом цинка, вызывая на нем вспышки света.

Спустя несколько недель, в течение которых Резерфорд размышлял над этой загадкой, он заявил: «Теперь я знаю, что произошло в эксперименте, и, кроме того, я знаю структуру атома». Он сказал, что почти вся масса и весь положительный электрический заряд сконцентрированы в ядре атома, размер которого не более 1/10 000 размера атома. Остальная часть атома пуста, за исключением электронов с их отрицательным зарядом (рис. 16.10).

Теория Нагаока о строении атома оказалась в принципе верной. В нашей Солнечной системе основная доля массы сосредоточена в Солнце. Так же и в ядре атома сосредоточена большая часть его массы. Как Солнечная система в основном состоит из «пустого» пространства между Солнцем и планетами, так же и атом «пустой» между ядром и электронами. В атоме концентрация вещества к центру даже более сильная: в масштабе Солнечной системы размер атомного ядра не больше размера планеты. Точных данных о размере электрона пока не существует, но в этом масштабе он наверняка не больше самого мелкого астероида.

Рис. 16.10. Модель атома Резерфорда. Тяжелое ядро состоит из многих ядерных частиц, а вокруг него обращаются электроны.

Глава 17 Странности микромира

Проникнув в тайны строения вещества, мы вновь можем вернуться к свету. Как нам уже известно, в XIX веке волновая теория восторжествовала над более ранней теорией Ньютона о частицах света — корпускулах. Но для волны нужна среда, в которой может распространяться волна. Для звуковых волн нужен воздух, а в космосе нет ни звуковых волн, ни воздуха. Предполагалось, что средой для световых волн служит эфир, заполняющий космос, но эта идея лишь усложняла проблему. Важнейшим шагом вперед стала первая статья Эйнштейна, вышедшая в 1905 году, в которой он показал, что в некоторых ситуациях свет ведет себя странно: его поведение напоминает поведение частиц, которые сейчас называют фотонами.

Единство волн и частиц

Теория Максвелла рассматривает свет как электромагнитные колебания. Но при использовании этой теории для объяснения спектра излучения абсолютно черного тела возникли проблемы. Было известно, что излучение черного тела обладает наибольшей силой на определенной длине волны и ослабевает по обе стороны от этого максимума в спектре. Но классическая теория не могла объяснить уменьшение интенсивности на высоких частотах. Немецкий физик Макс Планк понял, как можно объяснить наблюдаемый спектр черного тела: нужно предположить, что атом может излучать энергию только порциями определенного размера. Связанная с излучением энергия похожа на частицы: излучиться может одна, две, три и т. д. «частицы», но доля «частицы» излучиться не может.

Минимальная порция энергии, по предположению Планка, пропорциональна частоте волны: чем выше частота, тем больше энергии в каждой порции. Коэффициент пропорциональности называют постоянной Планка. Таким образом,

Энергия = Постоянная Планка x частота.

Поскольку частота и длина волны обратно пропорциональны друг другу, порция энергии обратно пропорциональна длине волны. Постоянная Планка очень мала, поэтому в быту мы не замечаем отдельных порций света, как не замечаем, что на вид сплошное вещество состоит из крошечных атомов.

Макс Планк был родом из Киля, но большую часть своих исследований провел в Мюнхене, где и защитил диссертацию (рис. 17.1). До этого Планк слушал лекции Кирхгофа и Гельмгольца в Берлине. Довольно неожиданно его избрали преемником Кирхгофа в Берлине. Планк исследовал излучение черного тела, и в 1900 году это привело его к важнейшему открытию. Похоже, Планк не очень высоко оценивал значение своего открытия, что энергия может излучаться только определенными порциями, называемыми квантами. Он считал, что это свойство атомов, и думал, что нет причин, мешающих электромагнитной волне переносить любое количество энергии.

Рис. 17.1. (а) Макс Планк (1858–1947) и (б) Нильс Бор (1885–1962).

Перейти на страницу:

Все книги серии Открытия, которые потрясли мир

Шерлок Холмс: наука и техника
Шерлок Холмс: наука и техника

Автор книги использует потрясающие приключения великого детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания замечательных историй о Шерлоке Холмсе. Из книги вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури. Вы познакомитесь с древними мифами и причудливыми фольклорными преданиями, которые пришлось развенчивать развивающейся науке судебной медицины. Чтение этой книги будет таким же увлекательным, как и любой из рассказов о Шерлоке Холмсе.(задняя сторона обложки)Эта книга напоминает поездку в уютном кэбе по дороге, построенной Шерлоком Холмсом. Эта дорога проведет вас через дебри медицины, права, патологической анатомии, гематологии и опасностей, подстерегавших судебную медицину в реальной жизни в XIX и XX веках.От темного пятна крови на белой стене в рассказе «Подрядчик из Норвуда» до траектории и удара пули в рассказе «Рейгетские сквайры» – автор книги Э. Дж. Вагнер использует потрясающие приключения Великого Детектива в качестве трамплина в реальный мир судебной медицины и судебных случаев, которые послужили основой для написания этих замечательных историй.Вы узнаете о знаменитых ученых, исследователях и судебно-медицинских экспертах, таких, как Эжен Видок из парижской сыскной полиции Сюрте, непреклонный детектив из Лондона Генри Годдард, специалист по отпечаткам пальцев сэр Френсис Гальтон и блестящий, хотя и несколько самоуверенный патологоанатом сэр Бернард Спилсбури. Вы познакомитесь с древними мифами и причудливыми фольклорными преданиями, которые пришлось развенчивать развивающейся науке судебной медицины. Наиболее характерными из них являются теория о продолжении роста волос и ногтей после смерти, а также идеи френологии — псевдонаучного учения о том, что личностные качества человека обусловлены формой и размером его черепа. Кроме того, вы узнаете о том, какую роль в истории криминалистики сыграли менингит, Черная смерть и вампиры.Эта книга изобилует тайнами реальной жизни, подобными тем, которые приходилось расследовать Шерлоку Холмсу. Что случилось с доктором Джорджем Паркменом, богатым врачом и филантропом, которого в последний раз видели в Гарвардской медицинской школе в 1949 г.? При расследовании этого дела впервые была проведена почерковедческая экспертиза, аналог которой проводил и Шерлок Холмс в повести «Собака Баскервилей», исследуя письмо, составленное из газетных вырезок: «Но ведь это мой конек! Разница между тем и другим совершенно очевидна».Читая эту книгу, ловишь себя на том, что перелистываешь ее страницы с таким же напряжением, как и любой из рассказов о Шерлоке Холмсе.

Э. Дж. Вагнер

Документальная литература
Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука

Похожие книги

Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука