Если вы подсчитаете, сколько возможно состояний для данного спина j, то их получится (2j+1). Другими словами, если вы скажете мне, какова энергия системы и ее спин
Мне хотелось бы прибавить еще один факт. Если вы случайно выберете некоторый атом с известным j и измерите его s-компоненту момента количества движения, то сможете получить какое-то одно из возможных значений, причем каждое из них
Кстати, этот факт имеет простой классический аналог. Представьте, что тот же самый вопрос вас интересует с классической точки зрения: какова вероятность какого-то определенного значения z-компоненты момента количества движения, если из набора систем, имеющих один и тот же момент количества движения, вы наугад выбрали одну?
Из того, что у нас было до сих пор, можно получить другое интересное и в каком-то смысле удивительное заключение. В некоторых классических расчетах в окончательном результате появлялась величина, равная
Скалярное произведение J
·J можно записать какПоскольку это скаляр, то он должен оставаться одним и тем же для любой ориентации спина. Предположим, что мы случайно выбрали образец какой-либо атомной системы и произвели измерения либо величины
значение любой из них должно быть тем же самым. (Ни одно из направлений не имеет особого преимущества перед любым другим.) Следовательно, среднее значение J
·J равно просто утроенной средней величине любой компоненты, скажемНо поскольку J
·J при любой ориентации одно и то же, его среднее, разумеется, будет постоянной величинойJ
·J = 3Если же мы теперь скажем, что то же самое уравнение будет использоваться и в квантовой механике, то можем легко найти
Вот что получается для системы со спином 3
/2:Отсюда мы заключаем, что
На вашу долю остается доказать, что соотношение (34.25) вместе с (34.24) дает в результате
Хотя в рамках классической физики мы бы думали, что наибольшее возможное значение z-компоненты J
равно просто абсолютной величине J, именно Ц(J·J), в квантовой механике максимальное значение§ 8. Магнитная энергия атомов
Теперь я снова хочу поговорить о магнитном моменте. Я уже говорил, что в квантовой механике магнитный момент атомной системы может быть связан с моментом количества движения соотношением (34.6):
где -
Атомные магнитики, будучи помещены во внешнее магнитное поле, приобретут дополнительную магнитную энергию, которая зависит от компоненты их магнитного момента в направлении поля. Мы знаем, что
Uмаг
=-m·В. (34.28) Выбирая осьСогласно квантовой механике, величина
Величину
Возможные значения магнитной энергии будут следующими:
где