Читаем Фейнмановские лекции по гравитации полностью

Наиболее прямое свидетельство того, что материя и антиматерия действительно ведут себя идентично по отношению к гравитационным эффектам, приходит из экспериментов по распаду 𝐾₀ и 𝐾₀, проведённых в Массачусетском Технологическом Институте (MIT). Сам по себе этот эксперимент не без своих собственных недостатков, но его результаты возможно могут быть использованы для того, чтобы исключить теорию, в которой возможно было бы неодинаковое поведение материи и антиматерии. Эти аргументы были приведены М. Гудом [Good 61].

Предположим, что гравитация действует на 𝐾₀ и 𝐾₀, в противном случае данный аргумент не работает. Эти две частицы являются античастицами друг для друга. Итак посмотрим, что происходит, если одна из них притягивается, а другая отталкивается гравитацией. Эти частицы имеют две моды распада, которые могут описываться как


𝐾₁

=

1

√2

(

𝐾₀

+

𝐾₀

),


𝐾₂

=

1

√2

(

𝐾₀

-

𝐾₀

).


Амплитуды для распада по этим модам интерферируют, эксперимент обнаружил эту интерференцию и установил значение Δ𝑚 разности масс такое, что Δ𝑚<ℏ/(10⁻¹⁰ 𝑐). Эта величина не согласуется с идеей, что вещество притягивается, а антивещество отталкивается, поскольку данный эксперимент проводился в гравитационном поле Земли, и если гравитационный потенциал есть φ, то имеется увеличение или уменьшение массы для одной моды 𝑚φ и -𝑚φ для другой, и такая разность масс была бы больше, чем ограничение, полученное в эксперименте MIT. Если мы рассмотрим гравитационный потенциал не Земли, а Солнца, который больше Земного, или рассмотрим даже Галактический потенциал, то получим всё более и более лучшие пределы на степень того, насколько гравитационное взаимодействие должно быть одинаковым для материи и антиматерии. Однако подобная аргументация может быть отвергнута теми, кто считает, что антиматерия отталкивается, но для этого ими должно быть признано, что 𝐾₀ и 𝐾₀ не являются гравитирующими частицами, а для этого уже требуется ввести новое специальное предположение. Очевидно, что любой единичный экспериментальный факт может быть проигнорирован, если мы готовы придумать особенную причину тому, почему данный эксперимент должен показывать такой результат, какой наблюдается.

Известно также, что одиночные свободные нейтроны падают в гравитационном поле так, как это ожидается. Этот факт известен с превосходной точностью, поскольку он должен учитываться при создании нейтронных интерферометров; медленные нейтроны из реактора могут коллимироваться в узкие пучки и детектироваться на некотором расстоянии от него, которое порядка нескольких сотен футов. Обнаружено, что они падают в гравитационном потенциале Земли так же, как и любые другие частицы, которые мы можем измерить. Резюмируя вышесказанное, можно утверждать, что первый изумительный факт, связанный с гравитацией, заключается в том, что отношение инерциальной и гравитационной массы постоянно, где бы мы его ни проверяли.

Второй изумительный факт, связанный с гравитацией, заключается в том, что это взаимодействие очень слабое. Сила гравитационного взаимодействия настолько слаба, что если венериане называют взаимодействия при β-распаде ”слабыми” взаимодействиями, то открытие гравитации вызвало бы гигантские затруднения. Очевидно, что гравитация играет очень важную роль в нашей жизни, хотя силы гравитации, действующие на наше тело, сравнимы с силами мускулов наших ног; а это значит, что гравитационные силы очень слабы сравнительно с другими силами, существующими между частицами. Это сравнение предположительно более универсально, чем сравнение сил гравитации с силой человека. Давайте для примера вычислим отношение гравитационной и электрической силы между двумя электронами. Тогда получаем следующий результат:


𝐹гравит

𝐹электр

=

1

4.17×10⁴²

,


Другими словами, сила гравитации действительно слаба. Подобное сравнение на языке отношения сил является более значимым, чем обычное сравнение на языке констант взаимодействия; например, часто говорят, что электромагнитные силы являются ”слабыми”, потому, что величина 𝑒/ℏ𝑐 - мала, а именно 1/137. Но ссылка на значение константы 1/137 не является слишком значимой, т.к. мы могли бы также хорошо представить, что более значимой величиной для ссылки являлся бы безразмерный заряд электрона, который равен √(4π²/ℏ𝑐), что выглядит весьма отлично от величины 1/137, но имеет то же самое физическое содержание. Таким образом, когда говорится, что слабое взаимодействие (взаимодействие при β-распаде) должно быть слабым потому, что сила взаимодействия есть ”малая величина” 𝐺𝑀𝑝=10⁻⁵, мы можем спросить, почему в данное соотношение включается масса протона? Если слабое взаимодействие передаётся с помощью некоторого мезона, называемого в настоящее время 𝐵-мезоном, то может быть более естественным учесть в предыдущем соотношении массу 𝐵-мезона, которая может быть много больше, чем масса нуклона, достаточная для того, чтобы константа взаимодействия была весьма отличной от ”малой” константы 10⁻⁵.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии