Наиболее прямое свидетельство того, что материя и антиматерия действительно ведут себя идентично по отношению к гравитационным эффектам, приходит из экспериментов по распаду 𝐾₀ и 𝐾₀, проведённых в Массачусетском Технологическом Институте (MIT). Сам по себе этот эксперимент не без своих собственных недостатков, но его результаты возможно могут быть использованы для того, чтобы исключить теорию, в которой возможно было бы неодинаковое поведение материи и антиматерии. Эти аргументы были приведены М. Гудом [Good 61].
Предположим, что гравитация действует на 𝐾₀ и 𝐾₀, в противном случае данный аргумент не работает. Эти две частицы являются античастицами друг для друга. Итак посмотрим, что происходит, если одна из них притягивается, а другая отталкивается гравитацией. Эти частицы имеют две моды распада, которые могут описываться как
𝐾₁
=
1
√2
(
𝐾₀
+
𝐾₀
),
𝐾₂
=
1
√2
(
𝐾₀
-
𝐾₀
).
Амплитуды для распада по этим модам интерферируют, эксперимент обнаружил эту интерференцию и установил значение Δ𝑚 разности масс такое, что Δ𝑚<ℏ/(10⁻¹⁰ 𝑐). Эта величина не согласуется с идеей, что вещество притягивается, а антивещество отталкивается, поскольку данный эксперимент проводился в гравитационном поле Земли, и если гравитационный потенциал есть φ, то имеется увеличение или уменьшение массы для одной моды 𝑚φ и -𝑚φ для другой, и такая разность масс была бы больше, чем ограничение, полученное в эксперименте MIT. Если мы рассмотрим гравитационный потенциал не Земли, а Солнца, который больше Земного, или рассмотрим даже Галактический потенциал, то получим всё более и более лучшие пределы на степень того, насколько гравитационное взаимодействие должно быть одинаковым для материи и антиматерии. Однако подобная аргументация может быть отвергнута теми, кто считает, что антиматерия отталкивается, но для этого ими должно быть признано, что 𝐾₀ и 𝐾₀ не являются гравитирующими частицами, а для этого уже требуется ввести новое специальное предположение. Очевидно, что любой единичный экспериментальный факт может быть проигнорирован, если мы готовы придумать особенную причину тому, почему данный эксперимент должен показывать такой результат, какой наблюдается.
Известно также, что одиночные свободные нейтроны падают в гравитационном поле так, как это ожидается. Этот факт известен с превосходной точностью, поскольку он должен учитываться при создании нейтронных интерферометров; медленные нейтроны из реактора могут коллимироваться в узкие пучки и детектироваться на некотором расстоянии от него, которое порядка нескольких сотен футов. Обнаружено, что они падают в гравитационном потенциале Земли так же, как и любые другие частицы, которые мы можем измерить. Резюмируя вышесказанное, можно утверждать, что первый изумительный факт, связанный с гравитацией, заключается в том, что отношение инерциальной и гравитационной массы постоянно, где бы мы его ни проверяли.
Второй изумительный факт, связанный с гравитацией, заключается в том, что это взаимодействие очень слабое. Сила гравитационного взаимодействия настолько слаба, что если венериане называют взаимодействия при β-распаде ”слабыми” взаимодействиями, то открытие гравитации вызвало бы гигантские затруднения. Очевидно, что гравитация играет очень важную роль в нашей жизни, хотя силы гравитации, действующие на наше тело, сравнимы с силами мускулов наших ног; а это значит, что гравитационные силы очень слабы сравнительно с другими силами, существующими между частицами. Это сравнение предположительно более универсально, чем сравнение сил гравитации с силой человека. Давайте для примера вычислим отношение гравитационной и электрической силы между двумя электронами. Тогда получаем следующий результат:
𝐹гравит
𝐹электр
=
1
4.17×10⁴²
,
Другими словами, сила гравитации