Читаем Feynmann 3 полностью

Посмотрим теперь, как применить нашу общую формулу (29.16) для сложения полей излучения двух осцилляторов к тем частным случаям, которые мы уже качественно обсуждали. Для этого необходимо лишь вычислить разность фаз j1 -j2 двух сигналов, приходящих в данную точку пространства. (Эффект, разумеется, связан с разностью фаз, а не с их абсолютными зна­чениями.) Рассмотрим случай, когда два осциллятора с равными амплитудами и с относительной фазой колебаний а (когда коле­бания одного имеют фазу нуль, фаза другого равна а) располо­жены на расстоянии d друг от друга. Будем искать интенсив­ность под углом q к линии запад — восток. [Заметьте, что этот угол не имеет ничего общего с углом q в формуле (29.1).] Разность расстояний от точки Р до осцилляторов равна dsinq (фиг. 29.10), поэтому разность фаз, возникающая по этой причине, равна числу длин волн, заключенных на отрезке dsinq, умноженному на 2p.


Фиг. 29.10. Два осциллятора, обладающие одинаковой амплиту­дой и разностью фаз a

.

(Более подготовленный читатель, вероятно, умножил бы волновое число k, т. е. скорость изменения фазы с расстояни­ем, на d sin 0, результат получится тот же самый.) Разность фаз, возникающая из-за разности хода лучей, есть, таким обра­зом, (2pdsinq)/l, но из-за относительного запаздывания осцилляторов возникает дополнительная разность фаз a. Отсюда пол­ная разность фаз двух волн в точке наблюдения равна

(29.17)

Это выражение охватывает все случаи. Теперь остается только подставить его в (29.16) и положить A12; получится фор­мула, с помощью которой можно вывести все результаты для двух антенн одинаковой интенсивности.

Рассмотрим частные случаи. Например, на фиг. 29.5 мы полагали, что интенсивность на угол 30° равна 2. Откуда это получается? Осцилляторы находятся на расстоянии X/2, следо­вательно, для угла 30° dsinq=l/4, отсюда j2-j1=2pl/4l=p/2 и интерференционный член равен нулю. (Происходит сло­жение двух векторов, направленных под углом 90" друг к дру­гу.) Сумма векторов есть гипотенуза прямоугольного равнобед­ренного треугольника, она в Ц2 раз больше каждой амплитуды. Следовательно, интенсивность в 2 раза больше интенсивности каждого источника в отдельности. Все остальные примеры исследуются точно таким же способом.


Глава

30

ДИФРАКЦИЯ

§ 1. Результирующее поле n одинаковых осцилляторов

§ 2. Дифракционная решетка

§ 3. Разрешающая способность дифракционной решетки

§ 4. Параболическая антенна

§ 5. Окрашенные пленки; кристаллы

§ 6. Дифракция на непрозрач­ном экране

§ 7. Поле системы осцилляторов, расположенных на плоскости

§ 1. Результирующее поле n одинаковых осцилляторов

Настоящая глава — непосредственное про­должение предыдущей, хотя название «Интерференция» здесь заменено словом «Дифракция». До сих пор никому не удалось удовлетворитель­ным образом определить разницу между дифрак­цией и интерференцией. Дело здесь только в привычке, а существенного физического раз­личия между этими явлениями нет. Единствен­ное, что можно сказать по этому поводу,— это следующее: когда источников мало, например два, то результат их совместного действия обыч­но называют интерференцией, а если источников много, то чаще говорят о дифракции. Поэтому мы не будем утруждать себя вопросом — ин­терференция это или дифракция, а просто про­должим наше обсуждение с того места, где мы остановились в предыдущей главе.


Обсудим теперь случай, когда имеется n осцилляторов, расположенных на равных рас­стояниях один от другого и обладающих рав­ными амплитудами, но разными фазами созда­ваемых ими полей. Разность фаз создается либо из-за выбора определенных фазовых сдвигов колебаний осцилляторов, либо потому, что мы находимся под углом к осцилляторам и возни­кает разность хода лучей. Независимо от при­чины возникновения разности фаз необходимо вычислить сумму такого вида:

где j — разность фаз соседних осцилляторов для некоторого направления лучей. В данном частном случае j=a+2pd1/2

sinq. Вычислим сумму R. Для этого воспользуемся геометрическим способом сложения. Длина первого слагаемого А, а его фаза равна нулю; длина второго также А, а фаза его равна j. Следующее слагаемое имеет снова длину А и фазу, равную 2j, и т. д. В конце концов получается часть правильного много­угольника с n сторонами (фиг. 30.1).



Фиг. 30.1. Результирующая ам­плитуда шести аквидистантных источников при разности фаз j между каждыми двумя соседними источниками.


Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии