Читаем Feynmann 3 полностью

Здесь мы должны обратиться к физическому смыслу нашего примера. В любой реальной ситуации плоскость зарядов не может быть бесконечной, а должна где-то оборваться. Если плоскость резко обрывается и ее граница имеет точно форму окружности, то наш интеграл будет равен некоторому значению на этой окружности (см. фиг. 30.11). Если же плотность зарядов

Фиг. 30.11. Вычисление интегра­ла

графическим способом.

постепенно уменьшается по мере удаления от центра (или обра­щается в нуль вне некоторой границы неправильной формы, так что для достаточно больших r вклад всего кольца шириной dr равен нулю), то коэффициент ню в точном интеграле убывает, стремясь к нулю. Поскольку длина добавляемых отрезков в этом случае уменьшается, а угол Dq остается тем же самым, график кривой, соответствующей интегралу, будет иметь вид спирали. Спираль оканчивается в центре первоначальной ок­ружности, как изображено на фиг. 30.12. Физически правиль­ное значение интеграла дается величиной А, которой на схеме соответствует расстояние от начальной точки до центра окруж­ности, равное как нетрудно убедиться.

(30.17)

Точно такой же результат мы получили бы из (30.16), положив e-iҐ=0.

(Есть еще одна причина, почему вклад в интеграл от больших значений r стремится к нулю,— это опущенный нами множитель, учитывающий проекцию ускорения на плоскость, перпендику­лярную линии PQ.)



Нас, конечно, интересует именно случай, имеющий физи­ческий смысл, поэтому мы положим е-iҐ

равным нулю. Возвраща­ясь к формуле (30.12) для поля и вводя все опущенные ранее множители, мы получаем

(30.18)

(помня, что l/i =-i).


Интересно отметить, что iwx

0eiwt в точности равно скорости зарядов, так что выражения для поля можно переписать в виде

Этот результат немного странен, потому что запаздывание отве­чает расстоянию z, которое есть кратчайшее расстояние от Р до плоскости. Но таков ответ, и, к счастью, формула довольно проста. [Добавим кстати, что, хотя формулы (30.18) и (30.19) бы­ли получены только для достаточно большого расстояния от плоскости, обе они оказываются правильными для любых z,

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии