Читаем Feynmann 3a полностью

Глава 33

ПОЛЯРИЗАЦИЯ

§ 1. Вектор электрического поля световой волны

§ 2. Поляризация рассеянного света

§ 3. Двойное лучепрелом­ление

§ 4. Поляриза­торы

§ 5. Оптическая активность

§ 6, Интенсив­ность отраженного света

§ 7. Аномальное преломление

§ 1. Вектор электрического поля световой волны

В этой главе мы рассмотрим круг явлений, связанных с векторным характером электриче­ского поля световой волны. В предыдущих главах направление колебаний электрическо­го поля нас не интересовало, правда, мы отметили, что вектор электрического поля лежит в плоскости, перпендикулярной направ­лению распространения света. Но нам не нужно было знать направление вектора более точно. Теперь мы перейдем к изучению явлений, в ко­торых главную роль играет определенное на­правление колебаний электрического вектора.

В идеально монохроматической световой волне электрическое поле колеблется с опре­деленной частотой, а так как x- и y-компоненты поля могут колебаться независимо с одной и той же частотой, то сначала мы рассмотрим сложение двух взаимно перпендикулярных колебаний. Какое электрическое поле возни­кает при сложении колебаний x- и y-компонент поля с одинаковой частотой? Складывая коле­бание в направлении x и колебание с той же фазой в направлении у, получаем в плоскости xy колебание в новом направлении.

На фиг. 33.1 показано, как происходит сложение колебаний с разными амплитудами в направлении x и y. Но примеры, представлен­ные на этом рисунке, не исчерпывают всех возможностей: до сих пор предполагалось, что колебания вдоль осей x и y находятся в одной фазе, но это совсем не обязательно. Может случиться, что х- и y-колебания происходят с разными фазами.

В этом последнем случае вектор электриче­ского поля описывает эллипс, что можно проиллюстрировать на следующем простом примере.


Фиг. 33.1. Сложение колебаний в направлениях х и у, когда разность фаз между ними равна нулю.

Подвесим на длинной веревке мяч, чтобы он мог свободно колебаться в го­ризонтальной плоскости; колебания будут носить синусои­дальный характер. Представим себе мысленно оси х и у в горизонтальной плоскости колебаний мяча с началом коор­динат в точке покоя мяча. Выбирая соответствующее на­чальное смещение и начальную скорость мяча, можно заста­вить мяч колебаться по оси х, по оси у или по любому дру­гому направлению в плоскости ху с одной и той же частотой, равной частоте маятника. Эти колебания мяча аналогичны коле­баниям электрического вектора, приведенным на фиг. 33.1. В каждом случае колебания в направлениях х ж у достигают максимума одновременно и, следовательно, оба колебания находятся в фазе. Но известно, что самый общий тип движения мяча — движение по эллипсу — возникает, когда колебания в направлениях х и у происходят с разными фазами.

На фиг. 33.2 показано сложение колебаний по осям х и у для разных значений сдвига фаз между ними. Во всех примерах электрический вектор описывает эллипс. Колебание по прямой есть тоже частный случай эллиптического, когда сдвиг фаз равен нулю (или целому кратному я); при равных амплитудах и сдвиге фаз 90° (или нечетном числе л/2) происходит движение по окружности.

На фиг. 33.2 компоненты электрического поля в направле­ниях х и у записаны в виде комплексных чисел, что оказывается очень удобным для явного выделения разности фаз. В этих обо­значениях не следует только путать действительную и мнимую части с х- и y-компонентами поля. Изображенные на фиг. 33.2 компоненты поля по осям х и у есть реальные физические поля, которые можно измерить. Действительная и мнимая части век­тора электрического поля введены только для математического удобства, и физического смысла такое разделение не имеет.

Перейти на страницу:

Похожие книги

Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература