Следует подчеркнуть важный факт. Для любой
§ 5. Поток поля Е
Теперь мы хотим вывести уравнение, которое непосредственно и в лоб учитывает тот факт, что закон силы — это закон обратных квадратов. Кое-кому кажется «вполне естественным», что поле меняется обратно пропорционально квадрату расстояния, потому что «именно так, мол, все распространяется». Возьмите световой источник, из которого льется поток света; количество света, проходящее через основание конуса с вершиной в источнике, одно и то же независимо от того, насколько основание удалено от вершины. Это с необходимостью следует из сохранения световой энергии. Количество света на единицу площади — интенсивность — должно быть обратно пропорционально площади, вырезанной конусом, т. е. квадрату расстояния от источника. Ясно, что по той же причине и электрическое поле должно изменяться обратно квадрату расстояния!
Но здесь ведь нет ничего похожего на «ту же причину». Ведь никто не может сказать, что электрическое поле есть мера чего-то такого, что похоже на свет и что поэтому должно сохраняться.
Предположим, что мы на мгновение представили себе электрическое поле в виде потока чего-то сохраняющегося и текущего повсюду, за исключением того места, где расположен сам заряд (должен же этот поток откуда-то начинаться!).
Представим что-то (что именно — неважно), вытекающее из заряда в окружающее пространство. Если бы Е было вектором такого потока (как h
— вектор теплового потока), то вблизи от точечного источника оно обладало бы зависимостью 1/r2. Теперь мы желаем использовать эту модель для того, чтобы глубже сформулировать закон обратных квадратов, а не просто говорить об «обратных квадратах». (Вам может показаться удивительным, почему вместо того, чтобы сходу, прямо и открыто сформулировать столь простой закон, мы хотим трусливо протащить то же самое, но с заднего хода. Немного терпения! Это окажется небесполезным.) Спросим себя: чему равно «вытекание» Е из произвольной замкнутой поверхности в окрестности точечного заряда? Для начала возьмем простенькую поверхность — такую, как показано на фиг. 4.5. Если поле Е похоже на поток, то суммарное вытекание из этого ящика должно быть равно нулю. Это и получается, если под «вытеканием» из этой поверхности мы понимаем поверхностный интеграл от нормальной составляющей Е, т. е. поток Е в том смысле, который был установлен в гл. 3. На боковых гранях нормальная составляющая Е равна нулю. На сферических гранях нормальная составляющая Е равна самой величине Е, с минусом на меньшей грани и с плюсом на большей. Величина Е убывает как 1/r2, а площадь грани растет как r2, так что их произведение от r не зависит. Приток Е через грань(4.30)
на этой поверхности.
Теперь покажем, что две «торцевые» поверхности могут быть без ущерба для величины интеграла (4.30) перекошены относительно радиуса. Хотя это верно всегда, но для наших целей