Читаем Feynmann 5 полностью

Плотность линий указывает величину вектора поля.

Немало изобретательности было потрачено на то, чтобы помочь людям мысленно представить поведение полей. И самая правильная точка зрения — это самая отвлеченная: надо про­сто рассматривать поля как математические функции коорди­нат и времени. Можно также попытаться получить мысленную картину поля, начертив во многих точках пространства по век­тору так, чтобы каждый из них показывал напряженность и направление поля в этой точке. Такое представление приво­дится на фиг. 1.1. Можно пойти и дальше: начертить линии, которые в любой точке будут касательными к этим векторам. Они как бы следуют за стрелками я сохраняют направление поля. Если это сделать, то сведения о длинах векторов будут утеряны, но их можно сохранить, если в тех местах, где напря­женность поля мала, провести линии пореже, а где велика — погуще. Договоримся, что число линий на единицу площади, расположенной поперек линий, будет пропорционально на­пряженности поля. Это, конечно, всего лишь приближение; иногда нам придется добавлять новые линии, чтобы их коли­чество отвечало напряженности поля. Поле, изображенное на фиг. 1.1, представлено линиями поля на фиг. 1.2.

§ 3. Характеристики векторных полей

Векторные поля обладают двумя математически важными свойствами, которыми мы будем пользоваться при описании законов электричества с полевой точки зрения. Представим себе замкнутую поверхность и зададим вопрос, вытекает ли из нее «нечто», т. е. обладает ли поле свойством «истечения»? Скажем, для поля скоростей мы можем поинтересоваться, всегда ли скорость направлена от поверхности, или, в более общем слу­чае, вытекает ли из поверхности больше жидкости (в единицу времени), нежели втекает.



Фиг. 1.3. Поток векторного поля через поверхность, определяе­мый как произведение среднего зна­чения перпендикулярной состав­ляющей вектора на площадь этой поверхности.

Общее количество жидкости, выте­кающее через поверхность, мы назовем «потоком скорости» через поверхность за единицу времени. Поток через элемент поверхности равен составляющей скорости, перпендикулярной к элементу, умноженной на его площадь. Для произвольной замкнутой поверхности суммар­ный поток равен среднему зна­чению нормальной компоненты скорости (отсчитываемой нару­жу), умноженному на площадь поверхности:

Поток = (Средняя нормальная ком­понента)·(Площадь поверхности).

(1.4)

В случае электрического поля можно математически определить понятие, сходное с истоком жидкости; мы тоже



Фиг. 1.4. Поле скоростей в жид­кости (а).

Представьте себе трубку постоянного се­чения, уложенную вдоль произвольной замкнутой кривой (б).

Если жидкость внезапно заморозить повсюду, кроме трубки, то жидкость в трубке начнет циркулировать (в).



Фиг

. 1.5. Циркуляция векторного поля, равная произведению

средней касательной составляющей вектора (с учетом ее знака

по отношению к направлению обхода) на длину контура.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Абсолютный минимум
Абсолютный минимум

Физика — это сложнейшая, комплексная наука, она насколько сложна, настолько и увлекательна. Если отбросить математическую составляющую, физика сразу становится доступной любому человеку, обладающему любопытством и воображением. Мы легко поймём концепцию теории гравитации, обойдясь без сложных математических уравнений. Поэтому всем, кто задумывается о том, что делает ягоды черники синими, а клубники — красными; кто сомневается, что звук распространяется в виде волн; кто интересуется, почему поведение света так отличается от любого другого явления во Вселенной, нужно понять, что всё дело — в квантовой физике. Эта книга представляет (и демистифицирует) для обычных людей волшебный мир квантовой науки, как ни одна другая книга. Она рассказывает о базовых научных понятиях, от световых частиц до состояний материи и причинах негативного влияния парниковых газов, раскрывая каждую тему без использования специфической научной терминологии — примерами из обычной повседневной жизни. Безусловно, книга по квантовой физике не может обойтись без минимального набора формул и уравнений, но это необходимый минимум, понятный большинству читателей. По мнению автора, книга, популяризирующая науку, должна быть доступной, но не опускаться до уровня читателя, а поднимать и развивать его интеллект и общий культурный уровень. Написанная в лучших традициях Стивена Хокинга и Льюиса Томаса, книга популяризирует увлекательные открытия из области квантовой физики и химии, сочетая представления и суждения современных учёных с яркими и наглядными примерами из повседневной жизни.

Майкл Файер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное