Натянутую резиновую пленку часто использовали для решения сложных электрических
задач экспериментальным путем. Аналогия используется в обратную сторону! Для подъема мембраны на высоту, соответствующую потенциалам всего набора электродов, подставляют разные стержни и полоски. Затем измерения высоты дают электрический потенциал в электростатической задаче. Аналогия проводится даже еще дальше. Если на мембране поместить маленькие шарики, то их движение примерно схоже с движением электронов в соответствующем электрическом поле. Таким способом можно воочию проследить за движением «электронов» по их траекториям. Этот метод был использован для проектирования сложной системы многих фотоумножительных трубок (таких, например, какие используются в сцинтилляционном счетчике или для управления передними фарами в автомашине кадиллак). Метод используется и до сих пор, но его точность не очень велика. Для более точных расчетов лучше находить поле численным путем с помощью больших электронных вычислительных машин.§ 4. Диффузия нейтронов;
сферически-симметричныйисточник в однородной средеПриведем еще один пример, дающий уравнение того же вида, но на сей раз относящееся к диффузии. В гл. 43 (вып. 4) мы рассмотрели диффузию ионов в однородном газе и диффузию одного газа сквозь другой. Теперь возьмем другой пример — диффузию нейтронов в материале типа графита. Мы выбрали графит (разновидность чистого углерода), потому что углерод не поглощает медленных нейтронов. Нейтроны путешествуют в нем свободно. Они проходят по прямой в среднем несколько сантиметров, прежде чем рассеются ядром и отклонятся в сторону. Так что если у нас есть большой кусок графита толщиной в несколько метров, то нейтроны, находившиеся сначала в одном месте, будут переходить в другие места.
Фиг. 12.7. Нейтроны рождаются однородно внутри сферы радиуса а в большом графитовом блоке и диффундируют наружу. Плотность нейтронов N получена как функция
r, расстояния от центра источника.Справа показана электростатическая аналогия: однородно заряженная сфера, причем N соответствует
j, а J соответствует Е.Мы опишем их усредненное поведение, т. е. их средний поток.
Пусть N
(x, у, z)DV — число нейтронов в элементе объема DV в точке (х, у, г). Движение нейтронов приводит к тому, что одни покидают DV, а другие попадают в него. Если в одной области оказывается нейтронов больше, чем в соседней, то оттуда их будет переходить во вторую область больше, чем наоборот; в результате возникнет поток. Повторяя доказательства, приведенные в гл. 43 (вып. 4), можно описать поток вектором потока J. Его компонента Jx есть результирующее число нейтронов, проходящих в единицу времени через единичную площадку, перпендикулярную оси х. Мы получим тогда
(12.19)
где коэффициент диффузии D
дается в терминах средней скорости v и средней длины свободного пробега l между столкновениями:
Векторное уравнение для J имеет вид
(12.20)
Скорость, с которой нейтроны проходят через некоторый элемент поверхности da
, равна J·nda (где n, как обычно,— единичный вектор нормали). Результирующий поток из элемента объема тогда равен (пользуясь обычным гауссовым доказательством) С·JdV. Этот поток приводил бы к уменьшению числа нейтронов в DV, если нейтроны не генерируются внутри DV (с помощью какой-нибудь ядерной реакции). Если в объеме присутствуют источники, производящие S нейтронов в единицу времени в единице объема, то результирующий поток из DV будет равен [S-(dNIdt)]DV. Тогда получаем(12.21)
Комбинируя (12.21) и (12.20), получаем уравнение диффузии нейтронов
(12.22)
В статическом случае, когда dN
/dt=0, мы снова имеем уравнение (12.4)! Мы можем воспользоваться нашими знаниями в электростатике для решения задач по диффузии нейтронов. Давайте же решим какую-нибудь задачу. (Пожалуй, вы недоумеваете: зачем решать новую задачу, если мы уже решили все задачи в электростатике? На этот раз мы можем решить быстрее именно потому, что электростатические задачи действительно уже решены!)