Читаем Feynmann 5b полностью

где q — угол между р0 и Е. Как и следовало ожидать, энергия становится меньше, когда диполи выстраиваются вдоль поля. Теперь с помощью методов статистической механики мы выясним, насколько сильно диполи выстраиваются. В гл. 40 (вып. 4) мы нашли, что в состоянии теплового равновесия относительное число молекул с потенциальной энергией U пропорционально


(11.15)

Фие. 11.3. Энергия диполя р0 в поле Е равна —р0·Е.

где U (х, у, z)

потенциальная энергия как функция поло­жения. Оперируя теми же аргументами, можно сказать, что если потенциальная энергия как функция угла имеет вид (11.14), то число молекул под углом 0, приходящееся на единичный телесный угол, пропорционально ехр (— U/kT).


Полагая число молекул на единичный телесный угол, на­правленных под углом q, равным n (q), имеем

(11.16)

Для обычных температур и полей показатель экспоненты мал, и, разлагая экспоненту, можно воспользоваться прибли­женным выражением

(11.17)

Найдем n , проинтегрировав (11.17) по всем углам; результат должен быть равен N, т.е. числу молекул в единице объема. Среднее значение cos q при интегрировании по всем углам есть нуль, так что интеграл равен просто n0 ,

умноженному на полный телесный угол 4p. Получаем


(11.18)

Из (11.17) видно, что вдоль поля (cosq=1) будет ориен­тировано больше молекул, чем против поля (cosq = -1). Поэтому в любом малом объеме, содержащем много молекул, возникнет суммарный дипольный момент на единицу объема, т.е. поляризация Р. Чтобы вычислить Р, нужно знать векторную сумму всех молекулярных моментов в единице объема. Мы зна­ем, что результат будет направлен вдоль Е, поэтому нужно только просуммировать компоненты в этом направлении (ком­поненты, перпендикулярные Е, при суммировании дадут нуль):

Мы можем оценить сумму, проинтегрировав по угловому распределению. Телесный угол, отвечающий q, есть 2psin qdq; отсюда



(11.19)

Подставляя вместо n(q) его выражение из (11.17), имеем

что легко интегрируется и приводит к следующему результату:


(11.20)

Поляризация пропорциональна полю Е, поэтому диэлектри­ческие свойства будут обычные. Кроме того, как мы и ожидаем, поляризация обратно пропорциональна температуре, потому что при более высоких температурах столкновения больше разрушают выстроенность. Эта зависимость вида 1/T называется законом Кюри. Квадрат постоянного момента р0 появляется по следующей причине: в данном электрическом поле выстраиваю­щая сила зависит от р0, а средний момент, возникающий при выстраивании, снова пропорционален р0. Средний индуцируе­мый момент пропорционален р02

Теперь посмотрим, насколько хорошо уравнение (11.20) согласуется с экспериментом. Возьмем водяной пар. Поскольку мы не знаем, чему равно р0 ,

то не можем прямо вычислить и Р, но уравнение (11.20) предсказывает, что x-1 должна ме­няться обратно пропорционально температуре, и это нам сле­дует проверить.

Из (11.20) получаем


(11.21)

так что x-1 должна меняться прямо пропорционально плот­ности N и обратно пропорционально абсолютной температуре. Диэлектрическая проницаемость была измерена при несколь­ких значениях давления и температуры, выбранных таким об­разом, чтобы число молекул в единице объема оставалось постоянным. (Заметим, что, если бы все измерения выполнялись при постоянном давлении, число молекул в единице объема уменьшалось бы линейно с повышением температуры, а х-1 изменялась бы как T-2, а не как T-1.)


Фиг. 11.4. Измеренные значе­ния диэлектрической проницае­мости водяного пара при не­скольких температурах.


На фиг. 11.4 мы отложили измеренные значения к — 1 как функ­цию 1/T. Зависимость, предсказываемая форму­лой (11.21), выполняется хорошо.

Есть еще одна особен­ность диэлектрической проницаемости полярных молекул — ее изменение в зависимости от частоты внешнего поля. Благодаря тому что молекулы имеют момент инерции, тяжелым молекулам тре­буется определенное время, чтобы повернуться в направлении поля. Поэтому, если использовать частоты из верхней микро­волновой зоны или из еще более высокой, полярный вклад в диэлектрическую проницаемость начинает спадать, так как молекулы не успевают следовать за полем. В противополож­ность этому электронная поляризуемость все еще остается неизменной вплоть до оптических частот, поскольку инерция

электронов меньше.

§ 4. Электрические поля в пустотах диэлектрика

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука