Рассчитаем сначала работу переноса каждой стороны по отдельности, а затем все сложим (вместо того, чтобы складывать силы до интегрирования). Силы, действующие на стороны 3
и 4, направлены поперек движения, так что на эти стороны работа не тратится. Сила, действующая на сторону 2, направлена по x и равна 1bВ(x); чтобы узнать всю работу против действия магнитных сил, нужно проинтегрировать это выражение по x от некоторого значения х, где поле равно нулю, скажем, от х = -Ґ до теперешнего положения х2:
(15.6)
Подобно этому, и работа против сил, действующих на сторону 1,равна
(15.7)
Чтобы вычислить каждый интеграл, надо знать, как В(х)
зависит от х. Но ведь сторона 1 при движении рамки расположена все время параллельно стороне 2 на одном и том же расстоянии от нее, так что в ее интеграл входит почти вся работа, затраченная на перемещение стороны 2. Сумма (15.6) и (15.7) на самом деле равна(15.8)
Но, попав в область, где В
на обеих сторонах 1 и 2 почти одинаково, мы имеем право записать интеграл в виде
где В —
поле в центре петли. Вся вложенная механическая энергия оказывается равной
Это согласуется с выражением для энергии (15.4), выбранным нами прежде.
Конечно, тот же вывод получился бы, если бы мы до интегрирования сложили все силы, действующие на петлю. Если бы мы обозначили через В
1 поле у стороны 1 а через В2 — поле у стороны 2, то вся сила, действующая в направлении х, оказалась бы равной
Если петля «узкая», т. е. если В
2 и В1 не очень различаются между собой, то можно было бы написать
Так что сила была бы равна
(15.10)
Вся работа, произведенная внешними
силами над петлей, равнялась бы
а это опять -m
В. Но теперь нам становится понятно, почему получается, что сила, действующая на небольшую токовую петлю, пропорциональна производной магнитного поля, как это следовало ожидать изДругой наш результат состоит в следующем. Хоть и не исключено, что не все виды энергии вошли в формулу Uмех
= m·B (ведь это просто некоторая имитация энергии), ею все же можно пользоваться, применяя принцип виртуальной работы, чтобы узнать, какие силы действуют на петли с постоянным током.§ 2. Механическая и электрическая энергии
Теперь мы хотим пояснить, почему энергия Uмех
, о которой говорилось в предыдущем параграфе, не настоящая энергия, связанная с постоянными токами, почему у нее нет прямой связи с полной энергией всей Вселенной. Правда, мы подчеркнули, что ею можно пользоваться как энергией, когда вычисляешь силы из принципа виртуальной работы, при условии, что ток в петле (и все прочие токи) не меняется. Посмотрим теперь, почему же все так выходит.Представим, что петля на фиг. 15.2 движется в направлении +х,
а ось z примем за направление В. Электроны проводимости на стороне 2 будут испытывать действие силы, толкающей их вдоль провода, в направлении у. Но в результате их движения по проводу течет электрический ток и имеется составляющая скорости vy в том же направлении, в котором действует сила. Поэтому над каждым электроном каждую секунду будет производиться работа Fyvy , где vy — компонента скорости электрона, направленная вдоль провода. Эту работу, совершаемую над электронами, мы назовем электрической. Оказывается, что когда петля движется в однородном поле, то полная электрическая работа равна нулю, потому что на одной части петли работа положительная, а на другой — равная ей отрицательная. Но при движении контура в неоднородном поле это не так — тогда остается какой-то чистый избыток одной работы над другой. Вообще-то эта работа стремится изменить поток электронов, но если он поддерживается неизменным, то энергия поглощается или высвобождается в батарейке или в другом источнике, сохраняющем ток постоянным. Вот именно эта энергия и не учитывалась, когда мы вычисляли Uмех в (15.9), потому что в наши расчеты входили только механические силы, действующие на провод.Вы можете подумать: но сила, действующая на электроны, зависит от того, насколько быстро
движется провод; быть может, если бы провод двигался достаточно медленно, этой электрической энергией можно было бы вообще пренебречь. Действительно, скорость, с какой высвобождается электрическая энергия, пропорциональна скорости провода, но все же полная выделенная энергия пропорциональна к тому же еще и времени, в течение которого проявлялась эта скорость. В итоге полная выделенная электрическая энергия пропорциональна произведению скорости на время, а это как раз и есть пройденное расстояние. Каждому пройденному в поле расстоянию отвечает заданное, и притом одно и то же, количество электрической работы.