Читаем Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия полностью

Могут ли эти общие законы объяснить движение планет? Ньютон доказал, что могут. Он показал, что притяжение по выведенным им законам обусловливает движение планет по эллиптическим орбитам, причем в одном из фокусов эллипса должно находиться Солнце. Ему удалось легко вывести два других закона Кеплера, которые также вытекают из его гипотезы всемирного тяготения. (Эти законы справедливы, если учитывается только притяжение Солнцем. Но мы должны учитывать и действие на движущуюся планету других планет.) В Солнечной системе эти притяжения незначительны по сравнению с притяжением Солнца, однако в точных расчетах ими нельзя пренебречь.

Так Ньютон перенес простое представление о движении Луны на всю планетную систему. Он предположил, что любое тело притягивается другим с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними. На основе этой гипотезы он создал подробную картину движения тел в Солнечной системе, свод законов, которые проверялись точными измерениями в течение двух столетий. Спутники планет подчиняются тем же законам. Даже кометы следуют общему правилу. И все эти движения определяются силой тяжести, которая хорошо известна на Земле. Ньютон объяснил небесную систему на основе единой рациональной схемы.

Это столь большое достижение, что следует специально проследить путь, которым Ньютон получил три закона Кеплера и затем использовал их в дальнейшей работе. Первое доказательство того, что движение планеты происходит по эллипсу, можно сделать либо используя изобретенное Ньютоном дифференциальное исчисление, либо опираясь на сложные и громоздкие геометрические доказательства. (Ньютон получил доказательство и геометрическим путем, чтобы убедить в своей правоте противников дифференциального исчисления.) Мы с большим сожалением опускаем это доказательство.

Выведем теперь третий закон Кеплера, а затем второй закон — закон равных площадей за равные времена. Второй закон следует из произвольной зависимости силы притяжения от расстояния, если эта сила действует по прямой, соединяющей центры планеты и Солнца. Но первому и третьему законам Кеплера удовлетворяет только закон обратной пропорциональности сил притяжения квадрату расстояния.


Третий закон Кеплера

Чтобы получить третий закон Кеплера, Ньютон просто объединил законы движения с законом всемирного тяготения. Эллиптические орбиты движения планеты получаются, если использовать методы дифференциального исчисления, учитывающего изменения радиуса и скорости планеты. В результате таких вычислений получится третий закон Кеплера.



Фиг. 152. Движение планет.


Для случая круговых орбит можно рассуждать следующим образом: пусть планета, масса которой равна m, движется со скоростью v по окружности радиуса R вокруг Солнца, масса которого равна М. Это движение может осуществляться только в том случае, если на планету действует внешняя сила mv2/R, создающая центростремительное ускорение v2/

R (см. гл. 21). Предположим, что притяжение между Солнцем и планетой как раз и создает необходимую силу. Тогда

G∙(Mm/d2) = mv2/R

и расстояние d между m и М равно радиусу орбиты R. Но скорость

v = ДЛИНА ОКРУЖНОСТИ / ПЕРИОД ОБРАЩЕНИЯ = 2πR/T

где Т — время, за которое планета совершает один оборот. Тогда

G∙(Mm

/R2) = [(2πR/T)2/R]∙m; G∙(Mm/R2) = 4π2mR2/T2R

Чтобы получить третий закон Кеплера, нужно перенести все R и T в одну сторону уравнения, а все остальные величины — в другую:

R3/T2 = GM/4π2

Если перейти теперь к другой планете, с другим радиусом орбиты R' и периодом обращения Т', то новое отношение (R')3/(T')2 будет опять равно GM/4π2; эта величина будет одинаковой для всех планет, так как G — универсальная постоянная, а масса М — одна и та же для всех планет, вращающихся вокруг Солнца. Таким образом, величина R3/T

2 будет одной и той же для всех планет в согласии с третьим законом Кеплера. Для других систем, например для спутников Юпитера, величина М будет другой (в этом случае М — масса Юпитера), a R3/T2 будет иметь другое значение, одинаковое для всех спутников.

Масса планеты m сокращается. Несколько планет с различными массами могли выдвигаться по одной и той же орбите. Вы могли бы об этом догадаться — ведь это знаменитый эксперимент, но в космическом масштабе.

Если закон убывания силы тяжести отличается от закона обратных квадратов, то отношение R3/T2 не будет одним и тем же для всех планет. Например, если использовать закон обратной пропорциональности кубу расстояния, то для всех планет постоянной будет величина R4/T2; в этом случае величины R3/T2 будут пропорциональны 1/R и для разных планет будут разными. В действительности, как установил Кеплер, эти величины одни и те же. Это означает, что справедлив закон обратных квадратов.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки