Допустим, что атомы гелия сконденсировались в твердое тело. Каждый атом теперь привязан упругими силами к своему месту в кристаллической решетке. У него нет ни поступательного, ни вращательного движения, но он может колебаться в трех независимых направлениях, так что должен обладать шестью долями колебательной энергии вместо трех долей поступательного движения. Поэтому удельная теплоемкость твердого гелия должна быть вдвое больше чем 0,75, т. е. 1,5. Однако замороженный гелий ведет себя не так просто; снова возникают квантовые неприятности. Но поведение других твердых тел при более высоких температурах хорошо согласуется с этим предсказанием. Умножая предсказанное для гелия число 1,5 на его атомный вес 4, мы получаем 6,0. Если вы проследите за рассуждениями в
При достаточно низких температурах квантовые ограничения сводят удельную теплоемкость к нулю. Кривую изменений теплоемкости можно получить комбинацией квантовых правил с кинетической теорией. «Достаточно низкие температуры» изменяются при переходе от одного твердого тела к другому и зависят от естественных частот колебаний атомов в кристалле. Поэтому, чтобы сравнить экспериментальные данные с теорией, мы для каждого твердого тела откладываем на графике свою шкалу температур. После этого все измерения ложатся на одну теоретическую кривую (фиг. 97).
Таковы замечательные результаты изучения удельной теплоемкости столь скучного на первый взгляд предмета. Уже первые предсказания кинетической теории согласовывались с фактами, убеждая тем самым в правильности теории. Затем появились исключения и потребовали новой, квантовой теории, которая в свою очередь очень хорошо согласовывалась с экспериментом и объяснила целый ряд кажущихся противоречий.
Фиг. 97.
Наложение квантовых ограничений на равномерное распределение энергии в случае колебаний атомов приводит к теоретическому предсказанию, изображенному сплошной линией.
Каков диаметр молекулы?