В слабом электрическом поле ионы движутся подобно падающим в воздухе частичкам пыли. Поле силы тяжести ускоряет частички пыли, но молекулы воздуха при каждом соударении отбирают часть приобретенной кинетической энергии. В среднем частичка теряет все, что приобретает за период между двумя соударениями, и кажется, будто она падает с постоянной скоростью, а ее вес компенсируется трением о воздух. С микроскопической точки зрения ее движение представляет собой целый ряд падений с ускорением, замедляемых соударениями. Если такая частичка обладает электрическим зарядом, ее можно «тянуть» электрическим полем. Для маленькой частички нетрудно сделать так, чтобы притяжение электрического поля намного превосходило притяжение поля силы тяжести (из-за малой массы). При этом частичка будет двигаться с гораздо большей постоянной скоростью. Но движение снова будет представлять собой серию прыжков с ускорением, замедляемых трением о воздух. (Именно так обстоит дело о крайне маленькими заряженными капельками масла при измерении заряда электрона в опыте Милликена.)
С электрически заряженными ионами во многом происходит то же самое. Ионы ускоряются электрическим полем до тех пор, пока не столкнутся с молекулами газа и не поделятся с ними дополнительной кинетической энергией, приобретенной от поля. Затем они вновь ускоряются до следующего соударения и т. д. (фиг. 118).
Фиг. 118.
В слабых полях соударения ионов упругие; приобретенной между двумя соударениями кинетической энергии недостаточно для создания других ионов. Они просто продолжают свой зигзагообразный путь, немного нагревая газ. Для создания дополнительных ионов они должны успеть набрать между двумя соударениями довольно много энергии, а для этого необходимо увеличить либо электрическое поле, либо длину свободного пробега.
В обычном воздухе разряд возникает в довольно сильном поле, скажем 3∙106
ньютон/кулон, но выкачайте половину воздуха и средний свободный пробег вдвое удлинится. На этом более длинном пути в поле ионы перед соударениями будут набирать вдвое больше энергии, так что для появления разряда потребуется поле вдвое слабее. А если выкачать 99,9 % воздуха, так что давление станет 1/1000 атм, то ионы будут размножаться гораздо более слабым полем. (Вывод: сжатый воздух — гораздо лучший изолятор, чем обычный.)Приложите к металлическим электродам в длинной стеклянной трубке напряжение в 100 000 в и медленно выкачивайте из нее воздух. При атмосферном давлении в трубке ничего не произойдет. Но через разрядник снаружи будет проскакивать искра. При 1
/100 атм в трубке появятся струящиеся разряды. При 1/1000 атм эти разряды захватят всю трубку. Теперь в трубке окажется сложное месиво нейтральных молекул и атомов (некоторые из них возбуждены), положительных ионов, движущихся в одном направлении, отрицательных, движущихся в другом, несущихся сломя голову электронов, рентгеновских лучей, ультрафиолетового и видимого света (он-то и «светит»). Покройте трубку изнутри минералом, который светится под действием ультрафиолетовых лучей, и вы получите современную люминесцентную лампу. Выкачайте воздух до 1/1000 000 000 атм, так что там останется очень мало светящихся молекул, и впустите туда неон до давления 1/100 атм. Получится трубка неоновой рекламы. Впустите туда несколько больше газа и уменьшите напряжение до величины, достаточной для возникновения разряда, и вы получите счетчик Гейгера.Фиг. 119.
Лет сто назад эта смесь ионов, или
Фиг. 120.
Вязкость (внутреннее трение в газах)