Читаем Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия полностью

Допустим, что в момент времени t движущиеся либо покоящиеся электрические заряды и магниты породили соответствующие поля: электрическое с напряженностью Е(Е — вектор с компонентами Ех, Еу, Ez

) и магнитное поле Н (с компонентами Нх, Ну, Нz). Тогда в пустом пространстве экспериментальные законы, известные уже сто лет, будут описываться приведенными соотношениями.


Постоянная KH относится к магнитным полям. Она появляется в выражении для силы, действующей со стороны магнитного поля на электрический ток. (См. также гл. 37 «Магнитные силы», т. 3 настоящего издания.) Существует соответствующая постоянная для электрического поля KE, которая появляется в законе Кулона (см. гл 33 «Электростатика. Электрические заряды и поля», т. 3 настоящего издания).


Посмотрите на колонку IV и сравните ее с колонкой III. Уравнения IV кажутся неполными, они портят общую симметрию[241].

Максвелл обнаружил этот дефект и исправил его, выдумав дополнительный ток в пустоте — «привидение», которое до тех пор даже никому и не снилось, но впоследствии ток этот был обнаружен экспериментально. А Как бы вы изменили уравнение IV, чтобы сделать его симметричным уравнениям III, если бы вам сказали, что часть уравнения пропущена (она была неизвестна еще в то время)? Попытайтесь.

Такое добавление не было ни счастливой догадкой, ни вдохновением свыше. Для Максвелла, отлично знавшего состояние науки, оно казалось обязательным, неизбежным расширением симметрии. В этом разница между развитием науки знающим специалистом и стихийным изобретательством энтузиаста-любителя.

Сделав свое фантастическое в то время добавление, Максвелл смог заложить всю связку уравнений в математический «автомат». Оттуда вышло удивительное уравнение знакомого вида — волновое уравнение, аналогичное тому, которое получилось для горба на веревке. Это новое уравнение утверждало, что изменяющиеся электрические и магнитные поля должны распространяться в виде волн со скоростью v = 1/√(KHKE), где КH — постоянная, характерная для магнитных эффектов, создаваемых движущимися зарядами, а К

E — соответствующая электростатическая постоянная, введенная Максвеллом при усовершенствовании уравнений[242]. (Kg входит в закон обратных квадратов для сил, действующих между двумя электрическими зарядами.) Необычный вывод этого вы найдете в конце гл. 37[243].

К удовольствию Максвелла и удивлению его противников вычисленное значение v совпадало со скоростью света, который, как считалось в то время, представляет какие-то волны. Все сходилось к тому, что свет мог быть одним из видов предсказанных Максвеллом электромагнитных волн. Это произошло за много лет до того, как предсказание Максвелла было проверено путем непосредственной генерации электромагнитных волн электрическими токами. Работа Максвелла была одним из величайших достижений физики. А ныне пришедшие ей на смену столь же смелые гипотезы создают основы физики сегодняшнего дня.

Одним из величайших вкладов математики в физику явилась теория относительности, которую можно считать разделом и физики, и математики; для ее понимания требуется хорошее знание как математики, так я физики.

Сейчас мы обратимся к «Специальной теории относительности» Эйнштейна, потом снова вернемся к математике как языку науки.


Теория относительности

Теория относительности привела к видоизменению механики и ломке старых научных представлений. Она возникла из простого вопроса: «Какова скорость нашего движения в пространстве?» Попытки экспериментально ответить на этот вопрос создали затруднения, которые заставили ученых думать о пересмотре существовавших представлений. В результате подобных переоценок возникла теория относительности — блестящий пример приложения математики и методологии к нашим взглядам на пространство, время и движение. Теория относительности — это раздел математики. Поэтому популярное изложение этой теории без математики почти наверняка обречено на неудачу. Чтобы понять теорию относительности, вы должны либо проследить за всеми выкладками по обычным учебникам, либо, как это сделано в данной книге, разобраться в исходных фактах и окончательных результатах, приняв на веру все, что касается работы самой «машины» математики.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки