Неизвестно, действительно ли Галилей сам произвел этот опыт или просто описал опыт, произведенный еще до него. Как бы то ни было, измерения были грубые, хотя Галилей считал, что установил правильный «закон». С помощью остроумных геометрических доказательств он показал, что этому закону должно с необходимостью подчиняться движение с постоянным соотношением Δv
/Δt.Таким образом, катящийся шар движется с постоянным ускорением. С помощью экстраполяции, переходя от малого наклона к большему и, наконец, к падению по вертикали, Галилей доказал, что свободно падающие тела имеют постоянное ускорение; следовательно, он получил закон, которому подчиняется их падение.
На произвольной наклонной плоскости сила, вызывающая ускорение, должна быть одинакова на всем пути. (Это — постоянная составляющая веса
шара.) Таким образом, Галилей уже получил часть второго закона Ньютона: постоянная сила вызывает постоянное ускорение.Рассматривая холмы с различными склонами, Галилей почти вплотную подошел к главному соотношению второго закона Ньютона: ускорение пропорционально силе
; но это соотношение он выражал в геометрической форме, что не позволяло выявить роль силы. Галилей разработал экспериментальные методы науки о движении, которыми можно было пользоваться при решении самых разнообразных задач: о полете снарядов, движении маятников, планет, а позднее о движении различных механизмов и даже составных частей атомов.
Скорость у подножия холма
Галилей пришел к такому выводу: если шар катится вниз с одной наклонной плоскости А, а затем вверх по другой наклонной плоскости В, то он докатится до первоначального уровня, каков бы ни был наклон.
Это привело его к очень важному общему допущению, на основании которого он сделал много предсказаний. Вообразим себе несколько различных склонов А1, A2, A3 одной и той же высоты, примыкающих к склону В (фиг. 88).
Фиг. 88
. Идеальный случай движения «с горки на горку».
Если предположение Галилея правильно, то шар должен подняться на одну и ту же высоту по склону В, независимо от того, с какого склона А
он спустился. У подножия холма, перед тем, как шар начнет подниматься по склону В, он будет иметь импульс, необходимый для того, чтобы подняться на склон В до точки, соответствующей той же высоте. Этот импульс должен, следовательно, быть одним и тем же у подножия холмов А1, A2 и т. д., т. е. одним и тем же для всех склонов. Поэтому шар должен иметь одну и ту же скорость у подножия любого склона. Галилей сделал на основании этого общее предположение: скорости, приобретаемые телом, движущимся по плоскостям, имеющим различные наклоны, равны между собой, если равны высоты, с которых он спускается. Мы вкратце говорили об этом свойстве в гл. 7[62], где указывали, что оно относится ко второму закону Ньютона. Галилей обобщил этот вывод на случай холмов, имеющих неровные склоны. Используя приведенные рассуждения и постоянство ускорения, Галилей получил ряд геометрических следствий для движения тел по наклонной плоскости.