Читаем Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия полностью


Наука

В тот период наука развивалась по пяти основным направлениям: 1) по мере роста свободы слова росло и общее значение науки, основанной на эксперименте; 2) происходило накопление фактических знаний и теории, объясняющей полученные результаты; 3) развивались математические методы для решения тех или иных задач; 4) изобретались и конструировались новые приборы для проведения экспериментов и, наконец, 5) изменялись научные методы и отношение к науке.

1) Возросшее значение науки. На примере жизни Галилея мы уже видели, как возросло значение науки в ту эпоху. Отец Галилея считал математику да и науку вообще плохо оплачиваемым и малоуважаемым занятием, и все же Галилей, несмотря на бунтарский нрав, в конце жизни был уважаем как один из величайших людей в мире. Ньютону, Бойлю и Гуку не приходилось отстаивать свои научные позиции; они спорили лишь о своих открытиях, а не о праве на само открытие. Они писали свои труды, не страшась осуждения и не боясь показаться смешными, их заботили лишь приоритет и слава. Дискуссии и публикации трудов помогали науке становиться общенародной и универсальной. Так истинность науки начала воздействовать на человеческий разум.

2) Накопление знаний. Научные достижения XVII века значительны и многообразны: к ним следует отнести законы Кеплера, открытие кометы Галлея, закон Гука, открытие Гарвеем системы кровообращения, открытия Бойля в области химии и его закон для идеальных газов.

3) Достижения в области математики. Была изобретена декартова система координат. Графики связали алгебру с геометрией, с одной стороны, сводя геометрические формы и преобразования к сжатым алгебраическим выражениям, а с другой — позволяя наглядно представлять алгебраические уравнения.

На графике I фиг. 98 изображена проходящая через начало координат прямая линия, на которой нанесены точки (x1, y1), (x2, y2)…. Из подобия треугольников следует, что отношения y1/x1, y2/x2…. равны между собой, т. е. одинаковы для любой точки на прямой. Обозначим эту постоянную k. Тогда каждая точка на прямой будет представлена парой значений (например,

x1, y1), удовлетворяющих соотношению у/х = k или у = . Это и есть алгебраическое описание графика, а прямая представляет собой геометрический образ данного соотношения. Если у и х — результаты физических измерений (например, s и t2 для падающего тела), то прямая линия выражает соотношение y = (const)x, или у ~ х, а наклон прямой определяет постоянную.



Фиг. 98.Графики в декартовой системе координат.


График II иллюстрирует уравнение у = kх + с. В этом случае мы не можем сказать, что у

~ х, но можем сказать, что Δу ~ Δх.

На графике III изображена окружность, причем

для точки P1

x21 у21 = R2

для точки P2

x22 у22 = R2

таким образом, уравнение этой окружности имеет вид

x2

у2= R2

Его можно переписать так:

x2/R2 + y2/R2 = 1

Эллипс можно получить равномерным растяжением окружности.

Нарисуйте окружность на листе резины и растяните этот лист (фиг. 99).



Фиг. 99.Растяжение окружности в эллипс.


Радиус R превратится в полуоси а и b. Окружность в соответствии о уравнением x2/R2 + y

2/R2 = 1 и с площадью круга πR2 = π∙RR превратится в эллипс, описываемый уравнением…?.. = 1 и площадью =?

Таким образом, с помощью декартовой геометрии эллиптические орбиты можно записать в виде алгебраических уравнений.

Возникли две серьезные математические проблемы, связанные с вычислениями: определение угла наклона касательных к кривым и площадей под кривыми с помощью математики, т. е. создание методов дифференцирования и интегрирования. Тангенс угла наклона касательной определяет скорость изменения функции. Вычисления сводятся просто к нахождению скорости изменения функции в некоторой точке. Это позволяет нам вычислять ускорения из выражения, описывающего изменение скорости, или скорости из выражения, связывающего расстояние и время. (Например: если s = 16t2, то v = 32t; отсюда следует, что а = 32, т. е. постоянное значение.) Интегрирование — операция сложения бесконечно большого числа бесконечно малых величин: нахождение площади путем сложения элементов исчезающе малых размеров (как и в случае второго закона Кеплера) или нахождение силы притяжения между телами конечных размеров путем суммирования сил притяжения бесконечно малых элементов объема этих тел.

Вы уже пользовались графиками и вычислениями ранее, при решении задачи о колесе, катящемся вниз с холма.

1. ЭКСПЕРИМЕНТ —> ГРАФИК. Вы наносите на график зависимость s от t2. Точки изображают события. Проведенная через эти точки прямая представляет собой совокупность фактов.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки