Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Я показал, что крылышко можно остановить почти мгновенно, если поднести к стенке коробки электрическую лампу. Стало ясным, что дело в тепле, которое излучает тело человека. Пустив в коробку струю табачного дыма, я продемонстрировал, что внутри коробки возникают конвекционные потоки воздуха, которые направлены именно таким образом, чтобы воспрепятствовать крылышку вращаться. Точные измерения показали, что на стороне коробки, обращенной к человеку, возникает температура примерно на один градус выше, чем на далекой от него стороне коробки.

Инфракрасные лучи, исходящие от тела, нагретого до 60–70 °C, каждый может почувствовать, поднося ладонь. Разумеется, надо устранить тепловую конвекцию. Нагретый воздух поднимается кверху, а вы поднесите ладонь снизу. В этом случае можете быть уверены в том, что ощутили именно тепловые лучи.

Прежде чем расстаться с тепловыми лучами, поясним, почему большим прогрессом явился переход от электрической лампы накаливания с угольной нитью к современной лампе с вольфрамовой питью. Все дело в том, что угольную нить можно довести до температуры; 2100 К, а вольфрамовую — до 2500 К. Почему эти 400 К так важны? Все дело в том; что цель лампы накаливания — не греть, а давать свет. Следовательно, надо добиться такого положения, чтобы максимум кривой приходился на видимое излучение. Как видно из графика, идеалом было бы располагать такой нитью, которая выдерживала бы температуру поверхности Солнца, 6000. К. Но даже переход от 2100 К к 2500 К повышает долю энергии, приходящейся на видимое излучение, от 0,5 до 1,6 %


ТЕОРИЯ ТЕПЛОВОГО ИЗЛУЧЕНИЯ


Если система излучающих и поглощающих тел замкнута, то «газ» фотонов, с помощью которых тела обмениваются энергией, должен быть в равновесии с атомами, дающими жизнь этим фотонам. Число фотонов с энергией hv зависит от того, сколько атомов находится на уровне E

и сколько на уровне Е2. Эти числа при равновесии неизменны.

Но равновесие носит динамический характер, поскольку одновременно идут процессы и возбуждения, и излучения. Каким-либо образом — то ли благодаря соударению с другой частицей, то ли из-за поглощения пришедшего извне фотона — атом или атомная система перебирается на высокий уровень. В этом возбужденном состоянии система существует некоторое неопределенное время (обычно измеряемое долями секунды), а затем возвращается на низкий уровень. Этот процесс называют самопроизвольным излучением. Атом ведет себя, как шарик, который с трудом удается удерживать на остроконечной вершине горки сложного профиля: ничтожное дуновение — и равновесие нарушено. Шарик скатывается в ямку, большей частью в самую глубокую, из которой его можно извлечь лишь сильным ударом. Про атом, спустившийся на самую низкую ступеньку, говорят: атом находится в стабильном состоянии.

Запомним, однако, что кроме положений «на вершине» и «в глубокой яме» существует еще и промежуточная ситуация: шарик может находиться в неглубокой ложбине, откуда его можно вызволить если не легким дуновением, то во всяком случае небольшим толчком. Такое положение (называется метастабильным. Так что кроме возбужденного и стабильного существует еще и третий вид уровней энергии — метастабильный.

Итак, переходы будут происходить в обе стороны. То один, те другой атом будут перебираться на верхний уровень. Через мгновение они будут спускаться на низкий уровень, излучая свет. Но в то же время другие атомы получат энергию и поднимутся на верхние уровни.

Закон сохранения энергии требует, чтобы число переходов сверху вниз равнялось числу переходов снизу вверх. Чем определяется число переходов вверх? Двумя факторами: во-первых, числом атомов, находящихся на нижнем этаже, и, во-вторых, числом ударов, которые поднимут их на верхний этаж. Ну, а число переходов вниз? Оно определяется, конечно, числом атомов, находящихся на верхнем этаже, и вроде бы больше ни от чего не зависит. Именно так сначала полагали физики-теоретики. Но концы с концами у них сходились плохо. Число переходов вверх, зависящее от двух множителей, росло с температурой куда быстрее, чем число переходов вниз, которое зависело только от одного фактора. Модель, казалось бы очевидная, приводила к нелепице. Получалось, что рано или поздно все атомы будут загнаны на верхний уровень: система атомов будет находиться в неустойчивом состоянии, а излучения не будет.

Вот этот невозможный вывод и выудил Эйнштейн в 1926 г. из рассуждений своих предшественников. Видимо, на переходы атомов с верхнего этажа на нижний влияет еще какое-то обстоятельство. Оставалось предположить, что кроме спонтанного (самопроизвольного) перехода на низкий уровень существует и переход вынужденный.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика