Читаем Физика для всех. Книга 4. Фотоны и ядра полностью

Частица без заряда, получившая название нейтрон, была открыта в 1932 г. Нетрудно понять, почему ее открытие задержалось. Ведь мы видим заряженные частицы по их следам (трекам), которые они оставляют в газе или фотоэмульсии благодаря их способности ионизировать попадающиеся на их пути молекулы. Но электрически нейтральная частица не взаимодействует с электронами, а потому и не оставляет на своем пути следов. Так что о существовании нейтронов можно судить лишь по вторичным эффектам.

Нейтрон был открыт при бомбардировке бериллия альфа-частицами. Эта реакция записывается так:

94Be + 42α — > 12

6C + 10n

Символ n принадлежит нейтрону. Но как же можно уверовать в существование частицы, которая сама не оставляет следов? По ее действиям. Представьте себе, что на зеленом сукне биллиардного стола находится невидимый глазу биллиардный шар. По столу катится видимый шар и вдруг «ни с того, ни с сего» отскакивает в сторону. Физик не может допустить, что его подводят законы сохранения энергии и импульса. Поэтому он делает вывод, что видимый шар натолкнулся на невидимый. Более того, пользуясь законами сохранения, он может определить все характеристики невидимого шара, выяснив, на какой угол отклонился от линии своего полета и как изменил свою скорость видимый шар.

Число нейтронов подсчитывают следующим образом. На пути нейтронного луча помещают вещество, содержащее атомы бора. При встрече с ядром бора нейтрон прекращает свое существование. Происходит следующая реакция:

105

В + 10n —> 73Li42
α.

Нейтрон пропал, а зато появилась альфа-частица. Регистрируя эти заряженные частицы, оставляющие видимый след в различного рода приемниках, мы сможем точно измерить интенсивность нейтронного луча.

Существует много других методов, которые позволяют с полной достоверностью определить все параметры, характеризующие нейтрон и вообще электрически нейтральную частицу. Совокупность точно согласующихся косвенных доказательств порою не менее убедительна, чем разглядывание видимых следов.


СВОЙСТВА АТОМНЫХ ЯДЕР


До открытия нейтрона физики полагали, что атомное ядро, построено из электронов и протонов. Это предположение таило в себе много противоречий, и попытки создания теории строения ядра были неудачными. Как только был найден нейтрон, возникающий при ядерных столкновениях, сразу появилась мысль, что атомное ядро построено не нейтронов и протонов. Впервые эта гипотеза была выдвинута советским физиком Д. Д. Иваненко.

С самого начала было ясно, что масса нейтрона если и не равна массе протона, то во всяком случае близка к ней. Поэтому тут же возникло четкое истолкование различий изотопов одного и того же элемента.

Как мы видим, каждому изотопу можно приписать два числа. Одно из них — это порядковый номер в таблице Менделеева Z

, который равен числу протонов в ядре. Порядковый помер определяет поэтому число электронов, связанных с ядром. А раз так, то становится ясным, что порядковый номер и должен отвечать за химическое поведение элементов (ведь химические реакции не затрагивают ядер).

Что же касается массового числа, то оно равно общему числу нейтронов и протонов. Так что изотопы одного и того же элемента отличаются друг от друга числом нейтронов в ядре.

Очень точными опытами найдены характеристики обеих частиц, образующих ядро. Масса протона равна 1,6726∙10-24 г, т. е. она в 1836 раз больше массы электрона. Спин протона равен 1/2, а магнитный момент 1,41∙10-23 ед. СГС. Масса нейтрона незначительно больше массы протона, а именно равна 1,6749∙10-24 г. Спин нейтрона равен 1/2. Магнитный момент нейтрона антипараллелен спину и равен 0,966∙10-23 ед. СГС.

Спины и магнитные моменты атомных ядер исследуются разными методами: применяются оптическая спектроскопия, радиоспектроскопия, изучение отклонения пучков частиц в неоднородном магнитном поле. На общих принципах этих измерений мы останавливались в 3-й книге и в предыдущих главах этой книги. А сейчас мы ограничимся лишь изложением главных фактов, полученных за последние десятилетия большим отрядом физиков.

Прежде всего подчеркнем, что законы квантовой физики, касающиеся момента импульса; справедливы для всех частиц. Поэтому и для атомных ядер момент импульса может быть представлен формулой


Здесь величина h — постоянная Планка, с которой приходится встречаться во всех формулах квантовой физики.

Обычаю спином называют не это выражение, а параметр S. Теория строго доказывает, а опыт блестяще подтверждает, что спин любой частицы может равняться только 0, 1/2, 1, 3/2 и т. д.

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное