Читаем Физика пространства - времени полностью

Рис. 82. Скользящее упругое столкновение, наблюдаемое в системе отсчёта, которая движется таким образом, что оба шара имеют до столкновения одинаковые скорости, но движутся во взаимно противоположных направлениях.

Рассуждения, приведённые в тексте, показывают, что после упругого столкновения оба шара движутся вновь с их первоначальными скоростями, а направления их движения снова взаимно противоположны, если их наблюдать в той же системе отсчёта.

Возьмём в качестве сталкивающихся объектов два одинаковых шара 𝐴 и 𝐵 и предположим, что между ними происходит не лобовое (редкое) столкновение, а скользящее (типичное). Всегда можно найти систему отсчёта, движущуюся с такой скоростью, что скорости шаров

до столкновения равны и противоположны по направлению (рис. 82). В этой системе отсчёта полный импульс двух одинаковых шаров равен нулю.

Заключение о равенстве нулю полного импульса следует из таких соображений симметрии: допустим, что полный импульс в этой симметричной по скоростям системе отсчёта отличен от нуля. Тогда, как мы сейчас увидим, возникает противоречие. Если другие два шара начинают двигаться в точности так же, как 𝐴 и 𝐵 на рис. 82, причём они отличаются лишь тем, что на место шара 𝐴 помещён шар 𝐵, а на место 𝐵 — 𝐴, ситуация не может измениться. Поэтому полный импульс должен остаться тем же самым как по величине, так и по направлению, что и полный импульс системы на рис. 82 (мы не изобразили его там, потому что на самом деле он равен нулю!). Но ведь изображение нового столкновения можно получить, если рассматривать рис. 82, повернув книгу вверх ногами (поворот на 180° в её собственной плоскости). А это приводит к изменению направления полного импульса на обратное. Следовательно, полный вектор импульса не должен изменяться при повороте на 180°! Это противоречие исчезает, лишь если полный вектор импульса по модулю равен нулю. Итак, до

столкновения две тождественные частицы обладают равными и противоположно направленными импульсами.

Что же произойдёт после столкновения? Шары должны и тогда двигаться во взаимно противоположных направлениях с равными скоростями. Если бы это было не так, то сумма их импульсов не была бы равна нулю и полный импульс не сохранялся бы при соударении в нарушение принятого требования. Ограничимся (лишь временно) анализом соударений, являющихся упругими по следующему определению. Если просматривать кинофильм, изображающий процесс столкновения, в обратном порядке, то в этом процессе не произойдёт никаких изменений, кроме того, что частица 𝐴 стала двигаться теперь справа налево, а частица 𝐵 — слева направо, тогда как раньше всё было наоборот, В этом смысле упругое соударение — это такое соударение, которое

обратимо. Если изображённое на рис. 82 соударение является в этом смысле упругим, то каждый шар изменяет лишь направление своего движения, но не абсолютную величину скорости (не считая момента удара), и в результате эффект соударения сводится к простому повороту векторов скорости обеих частиц. В этой системе отсчёта можно выбрать направления осей 𝑥 и 𝑦 таким образом, что 𝑥-компоненты скоростей обеих частиц не изменятся при столкновении, тогда как их 𝑦-компоненты просто изменят знак.

Описание столкновения в трех разных системах отсчета


Рис. 83. То же столкновение, что на рис. 82, но наблюдаемое в системе отсчёта ракеты.

Нас интересует анализ 𝑦-компоненты полного импульса и сохранение этой компоненты при таком столкновении. Для этого проще всего рассмотреть столкновение в такой системе отсчета, где шар 𝐴 движется только в направлении оси 𝑦. Это система отсчета ракеты, летящей вправо по отношению к системе, в которой изображен рис. 82, со скоростью, равной 𝑥-компоненте скорости шара 𝐴. Наблюдаемое в такой системе отсчета столкновение изображено на рис. 83. Имеется также система отсчета, в которой шар 𝐵 движется только в направлении оси 𝑦. Это лабораторная система отсчета, движущаяся влево по отношению к системе, в которой изображен рис. 82, со скоростью, равной 𝑥-компоненте скорости шара 𝐵. Наблюдаемое в такой системе отсчета столкновение изображено на рис. 84.

Рис. 84. То же столкновение, что на рис. 82, но наблюдаемое в лабораторной системе отсчёта.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное