Читаем Физика в быту полностью

Но около поверхности земли имеется электрическое поле. В ясную погоду над пустынной равниной его средняя напряженность равна 100–130 В/м, над океанами 80–90 В/м. Почему мы говорим о пустынной равнине? Потому что присутствие предметов и живых существ сильно изменяет земное электрическое поле. С высотой электрическое поле Земли быстро убывает (так, на высоте 1,5 км оно уже в 4 раза слабее) и исчезает на расстоянии 50–60 км от поверхности.

Заряд Земли и её поле изменяются в течение суток: они минимальны в 3–4 часа по Гринвичу и максимальны около 19 часов – на всей Земле!

Из-за избытка положительных ионов в воздухе к земле постоянно течёт слабый ток. Полный ток, достигающий поверхности земли, равен 1800 А, то есть ежесекундно отрицательный заряд Земли уменьшается на такое же количество кулон. Казалось бы, из-за этого Земля должна быстро потерять свой заряд, однако этого не происходит. В чём же причина?

Разгадку подсказал тот факт, что около 19 часов по Гринвичу достигает максимума степень грозовой активности на всей Земле (в основном это тропические грозы) – тогда же, когда максимально электрическое поле Земли. Именно молнии снабжают Землю отрицательным зарядом. Слабые атмосферные токи разряжают Землю, а молнии заряжают. В среднем в Землю бьёт 60–100 молний в секунду, и каждая молния приносит отрицательный заряд до 20 Кл.

Так выглядит сильно упрощённая картина. По современным представлениям электрическое поле Земли связано со множеством процессов, происходящих в атмосфере, ионосфере и даже магнитосфере Земли, и все эти процессы объединяют общим понятием – Глобальная электрическая цепь.


Во время грозы электрическое поле под грозовым облаком меняет своё направление на противоположное, а его напряженность достигает 100 тысяч В/м.

Геомагнитное поле

Земля обладает весьма сильным магнитным полем по сравнению с другими планетами земной группы. Вблизи Земли оно имеет такой вид, будто внутри земного шара находится постоянный полосовой магнит, ось которого на 10° отклонена от оси вращения Земли. Соответственно, магнитные полюса отстоят от географических на 2–3 тысячи км. Как уже говорилось, этот магнит образован токами во внешнем жидком ядре Земли. Схематично геомагнитное поле вблизи Земли изображено на рис. 19. Линии индукции магнитного поля – это как раз те воображаемые линии, вдоль которых выстраиваются стрелки компасов. Там, где линии гуще, магнитное поле сильнее. Из рисунка мы видим, что вблизи полюсов магнитное поле более сильное, чем вблизи экватора. Индукция геомагнитного поля составляет десятки микротесла (миллионных долей тесла: мкТл), и это в тысячи раз меньше, чем локальные магнитные поля, создаваемые обычными бытовыми приборами.


На экваторе магнитная индукция в настоящее время равна 34 мкТл, на широте Москвы 50 мкТл, вблизи полюсов около 66 мкТл. В области Курской магнитной аномалии магнитное поле 100 мкТл.

Геомагнитное поле в тысячи раз слабее поля постоянного магнита, который вы можете купить в магазине.


Магнитное поле, создаваемое токами в ядре, называют главным, и его вклад в общее поле составляет 95 %. Есть ещё аномальное поле, создаваемое намагниченными горными породами, и внешнее геомагнитное поле, связанное с солнечно-земными взаимодействиями (о нём поговорим чуть позже).

На большом расстоянии от Земли геомагнитное поле несимметрично: со стороны Солнца оно «сплющено» и простирается на 10 земных радиусов, а в направлении от Солнца магнитное поле образует шлейф, тянущийся на сотни тысяч километров – дальше орбиты Луны. Такая форма возникает из-за солнечного ветра. Солнечный ветер – это непрерывный поток высокоэнергетичных заряженных частиц, главным образом протонов и электронов. Эти заряженные частицы захватываются и удерживаются магнитным полем Земли, как в ловушке. Их траектории «наматываются» на линии поля, и частицы кочуют от одного полюса к другому, постепенно растрачивая свою энергию в столкновениях с молекулами атмосферы. Ближе всего они приближаются к Земле в районе полюсов, и мы видим их атаки как полярные сияния.


Рис. 19. Линии индукции магнитного поля вблизи Земли


Перейти на страницу:

Все книги серии Наука на пальцах

Биология для тех, кто хочет понять и простить самку богомола
Биология для тех, кто хочет понять и простить самку богомола

Биология – это наука о жизни, но об этом все знают, как знают и о том, что биология считается самой важной из наук, поскольку в числе прочих живых организмов она изучает и нас с вами. Конфуций сказал бы по этому поводу: «благородный человек изучает науку, которая изучает его самого, а ничтожный человек ею пренебрегает». И был бы тысячу раз прав.У биологии очень необычная история. С одной стороны, знания о живой природе человечество начало накапливать с момента своего появления. Первые люди уже разбирались в ботанике и зоологии – они знали, какие растения съедобны, а какие нет, и изучали повадки животных для того, чтобы на них охотиться. С другой стороны, в отдельную науку биология выделилась только в начале XIX века, когда ученые наконец-то обратили внимание на то, что у всего живого есть нечто общее, ряд общих свойств и признаков.О том, чем отличает живое от неживого, о том, как появилась жизнь и многом другом расскажет эта книга.В формате PDF A4 сохранен издательский макет.

Андрей Левонович Шляхов

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука