Читаем Физики продолжают шутить полностью

3. Ни в одном замке нет рычажков за антиотверстиями, ибо такой замок нельзя было бы открыть.

Пусть штифты, отверстия и рычажки описываются значением 1 переменных ai, bi и ci соответственно. Индекс — номер позиции. Антиштифты, антиотверстия и антирычажки соответствуют значению 0 тех же переменных. Определим теперь матричное умножение следующим способом:

где символическое произведение abc = a, если одновременно c ≤ b и а ≥ с, в противном случае abc = 1 — a. Отсюда следует, что если (a1, a2…a

k) есть собственный вектор оператора

то ключ может отпереть замок.

Используя этот формализм, легко найти полное число ключей, которые открывают данный замок . Оно равно

а число замков, которые могут быть открыты данным ключом (а), равно

При получении этих выражений учитывался тот факт, что замок есть тривиальный антизамок. В уравнениях (2) и (3) k есть сумма коэффициентов Клебша-Гордана, равная единице.

Развитый выше формализм позволил решить следующую задачу. Пусть некто хочет пройти из некоторой комнаты A через несколько дверей в произвольную комнату B. Число ключей, необходимое для этого, максимизировалось при произвольном выборе комнат A и

B. (Проблема минимизации не решалась, поскольку её решение тривиально — одинаковые замки.) Затем сотрудники института были разбиты на ряд подгрупп, и система ключей строилась таким образом, чтобы одновременно выполнялись два условия:

1) ни одна подгруппа не в состоянии открыть все те замки, которые могут быть открыты любой другой подгруппой;

2) трансформационные свойства групп соответствуют возможности одалживания ключей.

Создатели системы ключей надеялись, что она является единственно возможной и полной, и до известной степени это справедливо. Однако оказалось, что ключи, которые не должны были бы открывать некоторые двери, открывают их, если их вставлять в замок не до конца. Например, ключ (11111) может открыть замок в = 5 различных положениях. Число n было названо странностью системы ключ — замок. Экспериментальными исследованиями было найдено, что наша система ключей является весьма странной. Однако этот недостаток можно исправить, если потребовать для последней позиции соблюдения равенств ak = bk

 = ck = 1. Будем надеяться, что при ближайшем пересмотре системы ключей в неё будет внесено это исправление.

На отмычки настоящее исследование не распространяется.

Автор выражает благодарность сотрудникам, работающим в разных группах, за горячее обсуждение затронутых проблем.

────────────

Нильс Бор любил ходить в кино, причём из всех жанров признавал только один — ковбойские вестерны. Когда Бор по вечерам начинал жаловаться на усталость и рассеяность и говорил, что «надо что-то предпринять», все его ученики знали, что лучший способ развлечь профессора — сводить его на что-нибудь вроле «Одинокого всадника» или «Схватки в заброшенном ранчо». После одного из таких просмотров, когда по дороге домой все подсмеивались над непременной и избитой ситуацией — герой всегда хватается за револьвер последним, но успевает выстрелить первым, — Бор неожиданно стал утверждать, что так на самом деле и должно быть. Он развил теорию, согласно которой злодей, собирающийся напасть первым, должен сознательно выбрать момент, когда начать движение, и это замедляет его действия, тогда как реакция героя — акт чисто рефлекторный, и потому он действует быстрее. С бором никто не соглашался, разгорелся спор. Чтобы разрешить его, послали в лавку за парой игрушечных ковбойских револьверов. В последовавшей серии «дуэлей» Бор, выступая в роли положительного героя, «перестрелял» всех своих молодых соперников!

Трудно себе представить, что привлекало Бора в этих картинах. «Я вполне могу допустить, — говорил он, — что хорошенькая героиня, спасаясь бегством, может оказаться на извилистой горной тропе. Менее вероятно, но всё же возможно, что мост над пропастью рухнет как раз в тот момент, когда она на него наступит. Исключительно маловероятно, что в последний момент она схватится за былинку и повиснет над пропастью, но даже с такой возможностью я могу согласиться. Совсем уж трудно, но всё-таки можно поверить в то, что красавец ковбой как раз в это время будет проезжать мимо и выручит несчастную. Но чтобы в этот момент тут же оказался оператор с камерой, готовый заснять все эти волнующие события на плёнку, — уж этому, увольте, я не поверю!»

Введение в теорию S-матрицы

рассматриваемую главным образом с точки зрения приложений к описанию жизни физиков и прежде всего учитывающую характерные для таких систем статистические закономерности.

Перейти на страницу:

Похожие книги

Антология Сатиры и Юмора России XX века. Том 32. Одесский юмор
Антология Сатиры и Юмора России XX века. Том 32. Одесский юмор

«Составляя том, я исходил из следующего простого соображения. Для меня «одесский юмор» – понятие очень широкое. Это, если можно так сказать, любой достойного уровня юмор, связанный с Одессой. Прежде всего, конечно, это произведения авторов, родившихся в ней. Причем независимо от того, о чем они писали и где к ним пришла литературная слава. Затем это не одесситы, но те, кто подолгу жил в Одессе и чья литературная деятельность начиналась именно здесь. Далее, это люди, не имевшие никаких одесских корней, но талантливо и весело писавшие об Одессе и одесситах. И наконец, я беру на себя смелость утверждать, что к «одесскому юмору» могут быть отнесены и тексты иногородних авторов, впервые увидевшие свет на страницах одесских изданий (случай «Крокодила» начала века и «Фонтана» – конца). Главное – во всех этих текстах, как я надеюсь, присутствует то, что я называю одесской составляющей, – живая интонация, парадоксальность и при этом особая легкость выражения» (В.Хаит).

Валерий Исаакович Хаит , Валерий Хаит , Коллектив авторов

Юмор / Прочий юмор