Разногласия между Марковым и Некрасовым можно было разрешить полюбовно, если бы они не перешли от религиозных и политических тем к более серьезному предмету – математике. И Марков, и Некрасов интересовались вероятностью, в частности так называемым законом больших чисел, – той теоремой, которую демонстрировал на лекции Карл Пирсон, бросив на пол десять тысяч пенсов. Исходная версия теоремы, доказанная Якобом Бернулли за двести лет до Маркова, утверждает примерно следующее: если подбросить монету достаточно большое количество раз, доля орлов будет близка к 50 %. Конечно, нет никакого физического закона, который заставляет монету падать именно так, и она может выпасть одной стороной столько раз, сколько вы захотите. Однако это крайне маловероятно, и с увеличением числа подбрасываний монеты становится все более неправдоподобной любая фиксированная процентная доля, отличная от 50 %, будь то 60, 51 или 50,00001 % орлов. Человеческое существование подчиняется тем же законам, что и подбрасывание монеты. Статистика поведения и действий людей[157]
, например частота различных преступлений или возраст первого вступления в брак, также демонстрирует тенденцию концентрироваться около определенных средних значений[158], как если бы люди в совокупности были просто кучей бессмысленных монет.В течение двух столетий после Бернулли многие математики, включая учителя Маркова Пафнутия Львовича Чебышева, совершенствовали закон больших чисел, распространяя его на все новые и новые случаи. Однако все результаты требовали предположения о
Пример с выборами 2016 года показывает, почему это условие важно. В каждом штате разницу между оценкой по опросу и реальным голосованием можно рассматривать как случайную величину (ошибку прогноза). Если бы все эти ошибки были независимы друг от друга, то вероятность того, что все они будут в пользу одного кандидата, была бы крайне мала; гораздо вероятнее, что некоторые будут в одну сторону, некоторые в другую, и в среднем получится величина, близкая к нулю, то есть наша общая оценка будет недалека от истины. Но если ошибки зависимы, как часто бывает в реальной жизни, то наше предположение неверно, и тогда наш избирательный аппарат системно недооценивает одного кандидата – в Висконсине, Аризоне и Северной Каролине.
Некрасова беспокоила наблюдаемая статистическая закономерность человеческого поведения. Для него идея, что люди в своей основе
Для Маркова это было мистической ерундой. Хуже того, эта мистическая ерунда рядилась в математические одежды. Марков жаловался одному из коллег, что труд Некрасова злоупотреблял математикой. Он не мог исправить то, что считал метафизическими ошибками Некрасова, но с математикой он разобраться мог.
На мой взгляд, нет ничего более интеллектуально бесплодного, чем словесная перепалка между истинно верующими и сторонниками атеизма. Однако на этот раз борьба привела к серьезному математическому прогрессу, и ее отголоски чувствуются до сих пор. Марков сразу увидел, что ошибка Некрасова – в прочтении теоремы задом наперед. Бернулли и Чебышев утверждали, что средние сходятся, когда рассматриваемые переменные независимы. Отсюда Некрасов заключил, что переменные независимы всякий раз, когда средние сходятся. Однако этот вывод неверен! Каждый раз, когда я ем гуляш, у меня появляется изжога, но это не означает, что каждый раз, когда у меня изжога, я ел гуляш.