Например, один американский проповедник заявил, что землетрясение на Гаити — это божья кара за то, что они заключили пакт с дьяволом.
Часть моделей удобна для превращения в компьютерные симуляции, поскольку приведенные в них закономерности легко ложатся на язык несложных дифференциальных уравнений.
Пример тому модель Медоуза с пятью взаимодействующими по простым законам элементами-категориями.
ругой подход состоит в создании точных симуляций — полной виртуальной модели общества или некой важной ситуации (ядерной войны, экономики). Американское агентство научных исследований для нужд армии (DARPA) уже ведет такие работы. В будущем системы ИИ будут обладать еще большей прогностической силой, но если они будут конкурировать друг с другом, то в результате мир останется относительно непредсказуемым.
Прогнозирование по аналогии
В отличие от экстраполяции и модели, опирающихся на само явление, метод прогнозирования по аналогии основан на сравнении с похожими ситуациями. Этот метод был разработан Д. Канеманом и описан в его статье «Робкие решения и смелые предсказания».
Например, исходя из «внутреннего прогнозирования», компания, начинающая бизнес-проект, составляет бизнес-план и определяет дату завершения проекта, исходя из этого плана. А в случае «внешнего прогнозирования» она должна взять в качестве примера аналогичные проекты других компаний и посмотреть, сколько времени в среднем потребовалось на их реализацию.
Канеман приводит пример, как он и его группа составляли проект школьной программы. Исходя из внутренней логики проекта, предполагалось, что он закончится через полтора года. Однако, если бы они обратились к опыту аналогичных проектов в других дисциплинах, они бы обнаружили, что такие проекты в среднем продолжаются 7 лет. И действительно, их проект в конечном счете занял примерно 7 лет — гораздо больше, чем предполагалось вначале.
Прогнозирование по аналогии компенсирует недостаток информации для прогноза внутри проекта и возможное влияние когнитивных искажений.
Метод индукции
Метод индукции — выработка определенного правила на основании некоторого количества примеров и предположение, что это правило будет действовать в отношении и следующих событий. Индукция подобна экстраполяции, но является более логически формализированной.
Понятно, что чем больше количество примеров, подтверждающих правило, тем более надежно оно предсказывает будущие события. Индукция нужна как для выработки исторических закономерностей в духе «все утопии терпят поражение на практике», так и для предсказания длительности тех тенденций, которые наблюдаются в настоящее время.
Хотя общее понятие об индукции заложил Аристотель, а развил Бэкон, математически подобную проблему исследовал основоположник теории вероятностей Пьер-Симон Лаплас.
Формула Лапласа
В начале XIX века французский ученый Лаплас задался гипотетическим вопросом: какова вероятность того, что Солнце завтра взойдет? Разумеется, мы знаем наверняка, что оно завтра взойдет, если исходить из гелиоцентрической модели Солнечной системы и исключить крайние варианты, вроде того, что Солнце внезапно закроет облако космической пыли. Однако Лаплас хотел рассчитать эту вероятность только на основании того, что Солнце уже всходило в прошлом в течение конечного числа дней, а именно со дня сотворения мира.
Вывод формулы Лапласа довольно сложен, но сама она проста. Шансы на восход Солнца завтра равны n+1/n+2, где n — это число предыдущих восходов, о которых точно известно, что они были. Другими словами, если Солнце взошло в прошлом 1000 раз, то шансы того, что оно взойдет завтра, равны 1001/1002, а что не взойдет — 1/1002. Это вполне соответствует нашему интуитивному ожиданию.
Примеры практического применения формулы Лапласа.
Если мы знаем, что автобуса не было уже час, каковы шансы, что он придет в течение следующей минуты? Они равны 1/62.
Точно так же мы можем оценить шансы ядерной войны. Ядерное оружие не применялось в войне уже 65 лет со времен Хиросимы. Отсюда следует, что шансы на то, что оно будет применено в войне в следующем году, составляют 1/67 = 1,49%. В реальности десятыми и сотыми долями процента в такого рода предсказаниях можно смело пренебречь, поскольку их съедает неопределенность модели, но оценка в виде вероятности в 1% выглядит вполне разумной.
Оценка вероятности катастрофы шаттла, исходя только из того, что уже совершено 123 полета, из которых два были неудачными (в полном виде формула Лапласа позволяет учитывать и число неудач) будет 3/125 = 2,4%. Конечно, формула не учитывает, что на основании прошлого опыта полетов были сделаны значительные улучшения, но это уже подключение модельного прогнозирования.
В этих случаях понятие вероятности используется не как описание случайных процессов, а как мера нашего незнания. Такой подход к теории вероятностей называется байесовым.
Теорема Байеса