Читаем Гаусс. Теория чисел полностью

Первым, кто активно пользовался мнимыми числами, также называемыми комплексными, был итальянский математик Джироламо Кардано (1501-1576), который применил их в формуле решения кубических уравнений, но термин «комплексные числа» был введен Гауссом при доказательстве основной теоремы алгебры в своей докторской диссертации.


РАСПРЕДЕЛЕНИЕ РАЦИОНАЛЬНЫХ И ИРРАЦИОНАЛЬНЫХ ЧИСЕЛ НА ЧИСЛОВОЙ ПРЯМОЙ

Числовая прямая сформирована из рациональных чисел, представимых в виде дробей, и иррациональных, для которых такое представление невозможно. Но как распределяются оба множества на прямой? Есть ли какое-то сбалансированное распределение, которое делает возможным соседство подмножеств на числовой прямой? Чтобы ответить на этот вопрос, сделаем несколько выводов, которые могут вас удивить. Если взять два любых числа множества рациональных чисел, которое обычно обозначают Q, всегда можно найди другое рациональное число, заключенное между ними. Это достаточно очевидно. Если q1

, q2, то



а это число находится между двумя предыдущими по построению. Также существует рациональное число, которое находилось бы между только что вычисленным и каким-либо предыдущим, и этот процесс можно повторять бесконечно. Итак, между двумя любыми рациональными числами существует бесконечное количество рациональных чисел независимо оттого, как близко друг от друга располагаются исходные числа. Это приводит к мысли о том, что рациональные числа находятся так близко друг от друга, как мы этого захотим. Из-за этого свойства математики говорят, что Q является плотным множеством среди действительных чисел. То есть если х — действительное число и оно является центром отрезка числовой прямой, этот отрезок обязательно содержит рациональные числа, каким бы маленьким он ни был. Остаются ли на числовой прямой промежутки для иррациональных чисел? Ответ удивляет: множество рациональных чисел имеет нулевой размер. Это означает, что если мы выберем наугад точку на числовой прямой, то вероятность того, что эта точка будет рациональным числом, равна нулю. Математики оставляют нулевую вероятность только для невозможных случаев. Удивительно, что в школьной программе так много времени посвящено овладению арифметикой множества, исчезающе малого на числовой прямой.



Кроме того, именно Гаусс увидел самые широкие возможности для применения комплексных чисел в будущем. Также Гаусс ответил и на другой вопрос: понадобится ли математикам создавать новые числа для каждого нового уравнения? Если бы мы захотели решить такое уравнение, как х4 + 1 = 0, нужно ли искать новые числа? Гаусс доказал, что в этом нет необходимости: пользуясь числом i, математики могут решить любое полиномиальное уравнение. Его решением будет сочетание обычного действительного числа и нового числа i. Гаусс открыл, что мнимые числа — это просто добавление нового измерения к обычной числовой прямой, поэтому каждое мнимое число соответствует точке на плоскости — так же, как действительное число соответствует точке на прямой. Кроме того, ученый создал новый способ представления чисел с помощью координатной оси, как показано на рисунке.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История работорговли. Странствия невольничьих кораблей в Антлантике
История работорговли. Странствия невольничьих кораблей в Антлантике

Джордж Фрэнсис Доу, историк и собиратель древностей, автор многих книг о прошлом Америки, уверен, что в морской летописи не было более черных страниц, чем те, которые рассказывают о странствиях невольничьих кораблей. Все морские суда с трюмами, набитыми чернокожими рабами, захваченными во время племенных войн или похищенными в мирное время, направлялись от побережья Гвинейского залива в Вест-Индию, в американские колонии, ставшие Соединенными Штатами, где несчастных продавали или обменивали на самые разные товары. В книге собраны воспоминания судовых врачей, капитанов и пассажиров, а также письменные отчеты для парламентских комиссий по расследованию работорговли, дано описание ее коммерческой структуры.

Джордж Фрэнсис Доу

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
Ритм Вселенной. Как из хаоса возникает порядок
Ритм Вселенной. Как из хаоса возникает порядок

В книге Стива Строгаца представлен увлекательный обзор того, как происходит спонтанное упорядочение ритмов в природе. Автор затрагивает широкий спектр научных и математических вопросов, но основное внимание уделяет феномену синхронизации, который наблюдается в свечении светлячков, ритмичном биении сердец, движении планет и астероидов. Используя для иллюстрации своих глубоких идей интересные метафоры и жизненные ситуации, Строгац создал настоящий шедевр, который погружает читателя в восхитительный мир научных открытий.Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.На русском языке публикуется впервые.

Стивен Строгац

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука