Читаем Газета Троицкий Вариант 51 полностью

В экспериментах, выполненных в 1930-х годах, обнаружилось, что сопротивление благородных металлов (медь, золото, серебро — они не сверхпроводящие) при сильном понижении температуры не исчезает, как при сверхпроводимости, и даже не уменьшается, как предписывали стандартные теории (меньше фоно-нов — меньше источников рассеяния), а, наоборот, растет. По этому поводу выдвигались самые фантастические идеи, вплоть до утверждения о некоем непонятном законе природы, в силу которого, если сопротивление при нулевой температуре не обращается в ноль (сверхпроводимость), оно должно обращаться в бесконечность. Все это оказалось ерундой. Выяснилось, что сопротивление всегда растет на небольшую величину. Более того, было показано, что эффект зависит от чистоты образца и, скорее всего, не является внутренним свойством металлов, а зависит — от примесей. Тут надо сказать, что большинство теоретиков (не говорю о белоручках из фундаментальной физики, говорю о скромных рабочих лошадках из конденсированного состояния) на дух не переносят «грязи» и дефектов и, если явление связано с ними, теряют к нему всякий интерес.

В 1964 г. японский теоретик Юн Кондо рассмотрел задачу о рассеянии электронов в металле на магнитной примеси, т.е. на примеси с нескомпенсированным спином и магнитным моментом (например, железо, кобальт или марганец в золоте, серебре или меди). Взаимодействие электронного спина со спином примеси он считал малым (такое взаимодействие — оно называется s-d обменным — было введено в науку в 1946 г. моим учителем Сергеем Вонсовским). Кондо поэтому использовал, как обычно, теорию возмущений (в квантовой механике она называется борновским приближением).

Было уже известно, что в ведущем порядке (втором, так как первый зануляется) ничего интересного не происходит — обычная добавка к постоянному (не зависящему от температуры) электросопротивлению, как для простых, немагнитных примесей. Кондо рассмотрел следующий, третий порядок и обнаружил, что соответствующая поправка логарифмически зависит от температуры, а при температуре, стремящейся к нулю, формально стремится к бесконечности, что означает неприменимость теории возмущений. Температура, при которой это случается (поправка сравнивается с ведущим членом разложения), получила название температуры Кондо.

Работа Кондо объяснила (после 30 с лишним лет полного непонимания) рост сопротивления с понижением температуры. Осталось, однако, выяснить, каков все-таки физический механизм, ответственный за этот рост, и что делать при температурах ниже кондовской, когда теория возмущений не работает.

Следующий важный шаг был сделан почти сразу, независимо — советским (тогда) теоретиком Алексеем Абрикосовым и американцем Гарри Сулом. Воспользовавшись известным из квантовой теории поля методом суммирования расходимостей, они показали, что при температуре Кондо возникает резонанс в электронном рассеянии — электрон как бы эффективно «прилипает» к примеси. Однако использованный ими метод был необоснован (ниоткуда не следовало, что отброшенные члены менее важны, чем те, что учитывались при суммировании), не описывал корректно, как скоро выяснилось, поведение при низких температурах и не прояснял физический смысл происходящего. В частности, было совершенно непонятно, что происходит со спином примеси.


Визуализация орбитального Кондо-резонанса на поверхности хрома с помощью СТМ. O.Yu. Kolesnichenko, R. de Kort, M.I. Katsnelson, A.I. Lichtenstein, and H. van Kempen, Nature 415, 507 (2002).


Что происходит, когда электрон с энергией, равной энергии Ферми, подлетает к магнитной примеси? Допустим, у него спин направлен вверх, а у примеси — вниз. В результате s-d обменного взаимодействия оба спина перевернулись (при сохранении, понятно, полного спина). Но изменение состояния примеси в силу катастрофы ортогональности означает полную перестройку состояния всей остальной многоэлектронной системы! Это значит, что, несмотря на то, что электроны считаются невзаимодействующими, задача существенно многочастичная. Более того, она существенно затрагивает все электроны. Число Авогадро электронов и все важны. И как такое решать?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже