Пройденный в Колд-Спринг-Харбор экспресс-курс мне пригодился, но я не знал в подробностях, как собирать и обрабатывать данные. Мне на выручку пришел Боб Свит. Он вырос в сельской части штата Иллинойс, а студенческие годы провел в Калтехе. Защитив кандидатскую в Висконсине, он поступил в LMB в качестве постдока, а до того успел немного поработать преподавателем в Калифорнийском университете Лос-Анджелеса. Как и многие выходцы со Среднего Запада, Боб был англофилом, и, пребывая в Кембридже, использовал англизированную лексику, грамматику и фонетику. Несколькими годами ранее мы с ним почти одновременно прибыли в Брукхейвен и какое-то время были соседями. Впервые увидев его, я сразу поразился его роскошным усам, как у Пуаро; со временем Боб облысел, и усы его становились еще роскошнее. Он умел быть язвительным в своем педантичном и фамильярном стиле, что отбивало у некоторых желание с ним общаться, но мне он казался вдумчивым, теплым и великодушным человеком. Мы крепко сдружились.
В Брукхейвене Боб запускал кристаллографический аппарат, используя пучок синхротронного излучения, и объяснил мне, как собирать и обрабатывать информацию о кристаллах методом внедрения различных комбинаций тяжелых атомов (например, золота или ртути). Отличия в данных, собранных до и после внедрения, позволяли определить позиции тяжелых атомов и фазы рентгеновских отражений от них. Зная о фазах и измерив значения интенсивности, можно вычислить структуру молекулы. Но при внедрении тяжелых атомов качество кристалла портится, если атомы вообще связываются с белками, и данный процесс получил название «внедри и молись». К счастью, в конце 1980-х показал результаты новый метод, названный многоволновой аномальной дифракцией, или MAD.
Голландский кристаллограф Йоханнес Бейфут сформулировал принципы MAD в 1949 году. В их основе лежит способность некоторых атомов поглощать рентгеновские лучи и повторно испускать их, а не рассеивать, образуя отличия в интенсивности пар дифракционных пятен, которые в симметричном кристалле должны быть идентичными. Пары асимметричных пятен называются парами Фриделя. Отличия (аномальные показатели) их интенсивности дают информацию о фазах не хуже тяжелых атомов. Но аномалии рассеивания от атомов биомолекул, скажем углерода, азота и кислорода, недостаточны для исследований. Эту проблему в 1980 году решил Уэйн Хендриксон из Исследовательской лаборатории ВМФ. Воспользовавшись аномальным рассеянием от атомов серы, содержащихся в белке, он получил структуру (атомы серы входят в состав цистеина, одной из аминокислот).
В то время для рентгеновской кристаллографии стали применять синхротроны – ускорители частиц, разгоняющие электроны почти до скорости света. При вращении электроны испускают крайне интенсивные рентгеновские пучки, которые можно использовать в дифракционных исследованиях. Кейт Ходжсон и его коллеги из Стэнфорда догадались, что синхротрон, среди прочего, позволяет с точностью подбирать длину волны рентгеновских лучей, что дает возможность собрать данные на двух длинах волн, где рассеяние от некоторых специальных атомов будет значительно меняться. На основании разницы между двумя полученными множествами данных можно определить положения конкретных атомов и рассчитать фазы их отражений. Более того, можно сделать на одной из длин волн аномальное рассеяние от определенного атома особенно выраженным.
Уэйн Хендриксон тщательно разработал формальную модель для таких операций, отличную от модели Ходжсона, и определил структуры нескольких белков. Затем Уэйн предложил блестящую идею: выращивать бактерии, у которых в аминокислоте метионине вместо атома серы присутствует атом селена – заменить метионин на селенометионин. Аномальное рассеяние у селена более выраженно, чем у серы при типичных длинах волн рентгеновских лучей, причем пиковое значение селена приходится на длину, очень удобную для измерений в синхротроне, – около 1 ангстрема (или 0,1 нм). Поэтому метод получился невероятно мощным. Он позволил расшифровать структуру любого белка, где в значительном количестве присутствует метионин, и сегодня остается основным способом изучения новых белков.
Бобу было интересно попробовать этот метод на своих приборах в брукхейвенском синхротроне. Вито Грациано синтезировал кристаллы GH5, начиненные селенометионином, и вместе с Бобом мы тщательно собрали данные с волн, отраженных от атома селена. Стив также помог мне собрать данные по S5, но традиционным методом с использованием тяжелых атомов, где внедряли в кристаллы соединение золота. Теперь я располагал подробными данными по двум белкам, но понятия не имел, что с ними делать. Пришло время отправиться в творческий отпуск.