Если вместо Солнца мы представим шар из радиоактивного металла диаметром в несколько сантиметров с мечущимися внутри него нейтронами, мы столкнемся с миниатюрной версией той же задачи. Какое-то время этот подход работал, но только до определенного момента. Слишком много допущений приходилось делать. В настоящей бомбе, собранной в основном из очищенного урана, окруженной оболочкой из отражающего нейтроны металла, реальные нежелательные процессы проверят адекватность самых продвинутых математических методов. Энергии нейтронов, сталкивающихся друг с другом, будут изменяться в широком диапазоне, да и вероятность их рассеивания в разных направлениях может различаться. Бомба может не иметь идеальную сферическую поверхность. Различие между реальностью и традиционными упрощениями стала очевидна, когда перед группой Фейнмана была поставлена первая серьезная задача. Бете попросил оценить предложение Теллера заменить чистый металлический уран его гидридом, соединением урана и водорода. На первый взгляд, гидрид урана имел свои преимущества. С одной стороны, замедляющий нейтроны водород будет «встроен» в материал бомбы, и, следовательно, потребовалось бы меньшее количество урана. Но, с другой стороны, полученное вещество было пирофорным, то есть могло самовоспламеняться. Когда металлурги Лос-Аламоса приступили к получению экспериментальных образцов гидрида урана, им приходилось по несколько раз в неделю гасить небольшие «урановые» пожары. Однако идея с гидридом оказалась весьма полезной. Она показала теоретикам ограничения в их методах расчета критической массы. Чтобы здраво оценить идею Теллера, нужно было изобрести новый способ расчета. Прежде чем рассматривать вопрос об использовании гидрида урана, они воспользовались методом, основанном на аппроксимации (приближении) метода Ферми, предположив, что нейтроны, помимо всего прочего, будут двигаться с одной определенной скоростью. В чистых металлах или при медленных реакциях в бойлере с водой это предположение, казалось, должно было сработать. Но в своеобразной структуре молекулы гидрида, в которой огромные атомы урана связаны с двумя или тремя крошечными атомами водорода, нейтроны могли двигаться с любой скоростью, от очень медленной до невероятно большой. Никому еще не удавалось найти способ вычисления критической массы, когда скорости нейтронов могут настолько сильно различаться. Фейнман решил проблему, воспользовавшись парой приближений, которые сформировали диапазон возможных значений. Его способ позволял оценить допустимые границы: одно получившееся значение было максимально допустимым, другое — минимальным. Реальный опыт вычислений показывал, что этого должно было быть достаточно. Рассчитанные значения были так близки друг к другу, что ответ получался достаточно точным. Пытаясь объяснить членам своей группы, как он по-новому понимает смысл критического состояния (по их мнению, втихаря вторгаясь в чужие владения, так как этим направлением занималась группа Т-2 под руководством Сербера), Фейнман выдал серию новых идей, которые озадачили даже Велтона, а уж он-то лучше всех понимал Ричарда. Он заявил, что проблема будет решена, если они смогут составить таблицу так называемых собственных значений энергии для упрощенной модели, которую использовала группа Т-2. Казалось, что это невозможно, и члены его группы так ему и заявили, однако вскоре убедились, что Ричард снова был прав. Для схемы Теллера новая модель не подходила. Идея с гидридом вела в тупик. Для получения цепной реакции, как оказалось, эффективнее было использовать чистый уран и плутоний.