В последующие дни он вспомнил все, что знал о самоэнергии. Переписав свои уравнения с учетом наблюдаемой, «одетой», массы электрона вместо «голой», он выяснил, что решение, как он и думал, будет конечным. Тем временем Итаки достигла новость (ее принесли Вайскопф и Бете) о прорыве, сделанном Швингером в Кембридже. К тому моменту, когда в конце осени стало известно, что Швингер сумел рассчитать магнитный момент электрона — еще одну маленькую экспериментальную аномалию, недавно обнаруженную в лаборатории Раби, — Фейнман уже успел сделать то же самое. Сложные вычисления Швингера убедили ведущих физиков в том, что теория не зашла в тупик. «Господь велик!» — писал Раби Бете со свойственным ему сарказмом. А Бете отвечал: «Поистине замечательно, что твои эксперименты позволили взглянуть на теорию под совершенно новым углом; за относительно короткое время она стала развиваться. Я испытываю такое же волнение, как в дни зарождения квантовой механики».
Фейнман испытывал растущее чувство соперничества по отношению к Швингеру, и его это все больше раздражало. Ему казалось, что у него есть своя квантовая электродинамика, а у «Швингера — Вайскопфа — Бете», которых он считал командой — своя. В январе состоялась заседание Американского физического общества в Нью-Йорке, и Швингер на нем блистал. Его проект был далек от завершения, но он внедрил в стандартную квантовую механику новую идею перенормировки и сумел продемонстрировать ряд впечатляющих выводов. Он показал, что аномальный магнитный момент (например, Лэмбовский сдвиг) возникает вследствие взаимодействия электрона с собственным полем. Его лекция собрала толпу народа; зал был набит битком. Многие физики были вынуждены стоять в коридорах и слышали лишь взрывы аплодисментов (и смущенный смех, раздавшийся в тот момент, когда Швингер в конце своей речи произнес: «Совершенно ясно, что…»). Лекцию решили повторить в тот же день в Колумбийском университете; последовали спешные приготовления. На этой лекции побывал Дайсон. Оппенгеймер сидел в первом ряду и, не стесняясь, курил трубку. Когда настало время для вопросов и ответов, Фейнман встал и заявил, что получил аналогичные результаты и мог бы внести небольшую корректировку. И тут же пожалел о своих словах. Ему показалось, что они прозвучали как слова маленького мальчика, пролепетавшего: «Папа, я тоже так умею!» Той зимой еще мало кто догадывался, насколько сильным было соперничество между ним и Швингером, но одного раздосадованного замечания, высказанного Фейнманом своей девушке, было достаточно, чтобы та поняла источник его разочарования и разобралась в ситуации.
«Мне жаль, что эксперимент, над которым ты так долго работал, буквально украден кем-то другим, — ответила она. — Я понимаю, как тебе неприятно. Но, Дик, ведь конкуренция делает жизнь гораздо интереснее». И поинтересовалась: почему бы ему и его сопернику не объединить усилия и не начать работать вместе?
Не только Швингер и Фейнман пытались найти объяснение экспериментам с Лэмбовским сдвигом и магнитным моментом электрона и произвести соответствующие вычисления. Другие физики-теоретики взяли на вооружение подход Бете — те самые вычисления, которые он набросал на клочке бумаги. Они не видели необходимости в создании монументальной теории, новой квантовой электродинамики; ведь достаточно было внедрить технику перенормировки в существующую физику, и нашелся бы правильный ответ. Две команды ученых добились в этом успеха независимо друг от друга, придя к более совершенному, чем у Бете, решению, которое учитывало рост величин на околосветовой скорости. Но одна команда — Вайскопф и аспирант Брюс Френч — совершила роковую ошибку, в нерешительности посоветовавшись со Швингером и Фейнманом перед публикацией своих открытий. Поглощенные своими более амбициозными проектами, они предостерегли Вайскопфа, сказав, что тот допустил неточность в расчетах одного маленького коэффициента. Вайскопф решил, что столь блестящие молодые ученые не могут ошибаться оба сразу, и отложил публикацию. Прошли месяцы, прежде чем Фейнман позвонил Вайскопфу, извинился и сказал, что его вычисления были верны.
Что касается собственной теории Фейнмана, разработкой которой он занимался, прорыв в ней произошел, когда он столкнулся с щекотливой темой антиматерии. Первая античастица — антиэлектрон, или позитрон — была описана менее двадцати лет назад. Это был знак «минус» из уравнений Дирака, следствие симметрии между позитивной и негативной энергией. Дирак, будучи вынужден как-то объяснить наличие «дыр» в океане энергии, в 1931 году отметил, что «дыра, если таковая обнаружится, является новым видом частиц, неизвестным экспериментальной физике»[130]
. Впрочем, неизвестным этот вид пробыл лишь несколько месяцев: Карл Андерсон из Калифорнийского технологического нашел следы таких частиц в облачной камере, построенной для обнаружения космических лучей. Частица выглядела как электрон, но, двигаясь в магнитном поле, отклонялась вверх, а не вниз.