Через несколько лет Фейнман оказался в Беркли как раз в то время, когда восторженные экспериментаторы решили, что обнаружили антипротон — частицу, которая, как казалось, должна существовать при высоких энергиях. Но Фейнман считал, что при ста миллионах электронвольт (максимальная мощность ускорителя на тот год) антипротон обнаружить невозможно. Как когда-то Бете, он пошел в темную комнату посмотреть на пластины: из десятка сомнительных изображений лишь одно казалось абсолютно четким — на его-то основе и было сделано открытие. Как и положено траектории античастицы, след на снимке изгибался в обратном направлении.
В вакуумной камере есть какой-то предмет, сказал Фейнман.
Там ничего нет, ответили экспериментаторы, кроме тонких стеклянных стенок.
Но что-то удерживает верхнюю и нижнюю пластины вместе, ответил Фейнман. И действительно, они соединялись четырьмя небольшими болтами.
Он снова взглянул на белый дугообразный след в магнитном поле и ткнул карандашом в стол в нескольких сантиметрах от края фотографии. Болт находится здесь, сказал он. Достали схему камеры и, наложив ее на фотографию, обнаружили, что Фейнман указал точное место. Обычный протон, ударившись о болт, отскочил и попал на снимок.
Позднее практики из Калтеха признавались, что само присутствие Фейнмана на экспериментах оказывало на них моральное давление, влияло на их методы и открытия. Он был безжалостным скептиком. Любил вспоминать знаменитый эксперимент с каплей масла Роберта Милликена — одного из первых великих калтеховских физиков. Милликен измерил неделимый заряд электрона в частице, которую изолировал внутри крошечных плавающих масляных капель. Эксперимент оказался верным, но в расчеты закралась ошибка, и последующие опыты, проведенные на его основе, стали позором для физиков. Теперь уже никто не тыкал пальцем в небо, надеясь оказаться близко к правильному ответу; физики определяли диапазон, в котором должен находиться верный результат, и медленно сужали круг. Ошибка Милликена психологически давила на физиков и, подобно далекому магниту, сбивала фокус наблюдений. Если экспериментатор говорил Фейнману, что сделал вывод в ходе сложного процесса исправления данных, тот обязательно спрашивал: а как вы определили, в какой именно момент необходимо прекратить корректировку? Вы решили сделать это до того, как увидели, какое влияние это оказывает на результат? Исправлять, пока ответ не покажется «правильным» — как легко было угодить в эту ловушку! Чтобы избежать ее, нужно владеть всеми тонкостями работы ученого. Быть не только честным, но и упорным.
По мере продвижения вперед «эпоха частиц» предъявляла всё новые требования к физикам-теоретикам высшего ранга (а их ряды ширились с каждым днем). В процессе изучения взаимодействия частиц им приходилось проявлять чудеса изобретательности. Соревнуясь друг с другом, они придумывали абстрактные понятия, с помощью которых можно было бы организовать данные, поступающие из ускорителей. C возникновением новых квантовых чисел (таких как изотопический спин — величина, остававшаяся неизменной, невзирая на множественные взаимодействия) рождался новый взгляд на понятие симметрии, которая стала в то время основным предметом обсуждения в научной среде. Понятие симметрии в физике не слишком отличалось от симметрии в представлении ребенка, вырезающего фигурки из сложенного вдвое листа: нечто сохраняет свои свойства, в то время как все остальное изменяется. Например, при зеркальной симметрии правая и левая части остаются одинаковыми после того, как поменялись местами. При вращательной симметрии идентичность сохраняется после вращения системы по оси на определенный угол[149]
. А вот симметрия изотопического спина, как выяснилось, была тождественностью двух компонентов ядра, протона и нейтрона; двух частиц, состоявших в необычайно близких отношениях. Одна несла заряд, другая была нейтральной; их массы почти совпадали. Ученые по-новому взглянули на свойства этих частиц: было установлено, что они являются двумя состояниями одной единицы, называемой нуклоном. Единственным различием между ними была проекция изотопического спина: у одной частицы она была направлена вверх (1/2 у протона), у другой — вниз (–1/2 у нейтрона).Теоретикам нового поколения предстояло не только досконально изучить квантовую электродинамику, описанную Фейнманом и Дайсоном, — они также должны были овладеть богатым репертуаром методов, используемых на этой неизведанной территории. Понятие пространства для физиков уже давно обросло самыми диковинными интерпретациями. Пространства здесь были воображаемыми, величинам соответствовали оси, а не физическое расстояние. К примеру, «пространство движущей силы» позволяло прогнозировать и визуализировать движущую силу частицы, как будто та была всего лишь пространственной переменной. Со временем физики освоились в воображаемых пространствах, которых становилось все больше. Изучение пространства изотопического спина стало определяющим для понимания сил, оказывающих действие на нуклоны.