Читаем Гибридизация животных полностью

Если эта разность положительна, то положителен и наш опыт-(в данном отношении), так как крайние плюс-варианты из F2 будут крупнее крайних плюс-вариантов вида А. Мы получаем даже еще более конкретный ответ: 1) насколько мы выигрываем в этом скрещивании и 2) какое количество особей в F2 необходимо получить, чтобы добиться заданного превышения.

Конечно подобные расчеты нельзя применять механически… Необходимо более вдумчиво рассмотреть характер распределения вариаций в F2, эксцессивность или многовершинность его, асимметрию и пр., чтобы иметь возможность оценить приложимость кривой Гаусса и основанных на ней приводимых расчетов. Но в эти детали, не носящие уже специфического характера, мы здесь можем не входить.

Подобным же образом могут быть оценены и шансы достижения комбинации двух (и более) признаков, — Здесь уже необходимо изучение корреляции рассматриваемых признаков α и β и построение для них корреляционного поля, на которое одновременно может быть нанесено и поля родителей. По подобному чертежу можно сделать выводы и о том, какая может быть получена наиболее желательная комбинация двух данных признаков и какое количество особей нужно получить для реализации этой комбинации.

При всяких подобных вычислениях нужно всегда иметь в виду учение о статистических ошибках, определяющих точность выводов, и в данном случае уверенность делаемых предсказаний. В частности вычисляемые для второго поколения величины MF2 и σF2 будут том точнее, чем на большем материале они будут вычислены. Соответственно и предсказания будут точнее, и их точность по общему закону будет пропорциональна корню квадратному из числа особей. Увеличивая число особей в четыре раза, мы повышаем точность вдвое (вдвое уменьшаем величину ошибки). Однако только по этим данным и могут быть достаточно правильно оценены перспективы данного скрещивания. Так, известно по опытам биологов, что при скрещивании двух видов в F2 идет столь сложное-расщепление, что даже при довольно значительных количествах-особей F2 не удается извлечь формы, даже повторяющие свойства родителей, а не только выходящие за их пределы. Тем не менее, вычисляя сигму, можно будет с уверенностью предсказать, что выход за пределы родительских форм все же может быть достигнут, хотя бы при помощи дальнейших скрещиваний.

Во всяком случае важно иметь в виду следующее: как бы ни был обширен эксперимент, в F2

межвидового скрещивания мы получаем лишь ничтожную долю генотипов, возможных к по-лучению в этом скрещивании. Поэтому-то перед нами и стоит ответственная задача по. этой ничтожной доле суметь оценить дальнейшие перспективы данного скрещивания. Нужно иметь в виду, что уже при различии между видами в 10 генах в F2 должно возникать 1024 комбинации генов и 59049 различных генотипов (210 и З10
)! Между тем при скрещивании таких сравнительно близких видов растений, как Antirrhinum majus и A. molle, Баур считает, что в F2 происходит расщепление примерно по 100 генам, т. е. одно число возможных комбинаций значительно превышает величину с 30 нулями (1 000 000 000 000 000 000 000 000 000 000).

Между тем и эта величина очень мала по сравнению с фактической. Если например у коровы 30 пар хромосом, то различие в 100 генах достигается уже тогда, если в каждой хромосоме коровы всего лишь 3 гена будут отличаться от генов например бизона. На самом деле вероятно каждая хромосома коровы от каждой хромосомы бизона отличается гораздо большим числом генов.

Но даже если число 2100 уменьшить в миллиарды раз, то и тогда будет ясно, что даже при тысячах особей F2 это будет лишь ничтожной долей

тех бесчисленных комбинаций, которые могут возникнуть. А поэтому умение оценить по этим намекам действительно возможные перспективы скрещивания чрезвычайно важно. Здесь одинаково важно 1) во-время определить, что в данном скрещивании нет интересных перспектив и что следовательно с ним не стоит дальше работать, не стоит затрачивать на него силы и средства и 2) оценить, что можно ожидать от скрещивания даже тогда, когда первые сотни особой F2 еще не дают чего-либо интересного.

Проблема проектирования

Проектирование новых форм животных, как мы кратко изложили в. первой главе, должно будет явиться той руководящей теорией, которая станет стержнем гибридагогии. Правда, мыслима гибридизация по «принципу» — скрещивай все и вся, авось что-нибудь ценное и получится. Но это конечно не принцип социалистического, планового хозяйства и науки. Мы должны суметь поднять теоретический уровень работы настолько, чтобы быть в состоянии четко и конкретно ставить себе задачи и прямо и с максимальной производительностью труда и экономией сил и средств эти задачи разрешать. Для этого мы и должны научиться проектировать новые формы живых существ, как бы трудны эти работы ни были и какого бы всеобъемлющего синтеза биологических, а частично и других знаний они ни потребовали.

В проектировании новых форм животных можно различить три ступени:

1) народнохозяйственный эскиз-заказ;

Перейти на страницу:

Похожие книги

История биологии с начала XX века до наших дней
История биологии с начала XX века до наших дней

Книга является продолжением одноименного издания, вышедшего в 1972 г., в котором изложение доведено до начала XX в. В настоящей книге показано развитие основных биологических дисциплин в XX в., охарактеризованы их современный уровень и стоящие перед ними проблемы. Большое внимание уделено формированию молекулярных отраслей биологии и их роли в преобразовании всего комплекса биологических наук. Подобная книга на русском языке издается впервые.Предназначается для широкого круга научных работников, преподавателей, аспирантов и студентов биологических факультетов.Табл. 1. Илл. 107. Библ. 31 стр.Книга подготовлена авторским коллективом в составе:Е.Б. Бабский, М.Б. Беркинблит, Л.Я. Бляхер, Б.Е. Быховский, Б.Ф. Ванюшин, Г.Г. Винберг, А.Г. Воронов, М.Г. Гаазе-Рапопорт, О.Г. Газенко, П.А. Генкель, М.И. Гольдин, Н.А. Григорян, В.Н. Гутина, Г.А. Деборин, К.М. Завадский, С.Я. Залкинд, А.Н. Иванов, М.М. Камшилов, С.С. Кривобокова, Л.В. Крушинский, В.Б. Малкин, Э.Н. Мирзоян, В.И. Назаров, А.А. Нейфах, Г.А. Новиков, Я.А. Парнес, Э.Р. Пилле, В.А. Поддубная-Арнольди, Е.М. Сенченкова, В.В. Скрипчинский, В.П. Скулачев, В.Н. Сойфер, Б.А. Старостин, Б.Н. Тарусов, А.Н. Шамин.Редакционная коллегия:И.Е. Амлинский, Л.Я. Бляхер, Б.Е. Быховский, В.Н. Гутина, С.Р. Микулинский, В.И. Назаров (отв. секретарь).Под редакцией Л.Я. Бляхера.

Коллектив авторов

Биология, биофизика, биохимия
Мозг рассказывает. Что делает нас людьми
Мозг рассказывает. Что делает нас людьми

Непостижимые загадки (как человек может хотеть ампутировать себе руку? почему рисунки аутичного ребенка превосходят по своему мастерству рисунки Леонардо? что такое чувство прекрасного? откуда берется в нас сострадание? как может человечество передавать культуру от поколения к поколению? что породило речь? где живет самосознание?) находят свое объяснение на уровне нейронов мозга — благодаря простым и гениальным экспериментам B. C. Рамачандрана. Он великий ученый современности, но у него еще и искрометное чувство юмора — и вот вам, пожалуйста, блестящее повествование о странном человеческом поведении и работе мозга.Самые последние достижения науки о мозге. Где в мозге кроется то, что делает человека человеком? B. C. Рамачандран назван одним из ста самых выдающихся людей XX века.

Вилейанур С. Рамачандран , Вилейанур Субраманиан Рамачандран

Биология, биофизика, биохимия / Психология и психотерапия