С 1819 года куратором Казанского университета был М.Л. Магницкий, занявшийся искоренением вольнодумства. Для студентов ввели монастырскую дисциплину; в научных курсах отдали приоритет богословию. Лобачевского лишили кафедры чистой математики; он стал преподавать физику и астрономию.
Доходило до абсурда. Профессор прикладной математики Никольский вещал: «Гипотенуза в прямоугольном треугольнике есть символ сретения правды и мира, правосудия и любви через ходатая Бога и человека, соединение горнего с дольним, земного с божественным… Как без единицы не может быть числа, так Мир не может быть без единого творца». За такие успехи в просвещении Никольского поставили ректором Казанского университета.
Вступивший на престол Николай I обратил внимание на деятельность Магницкого. Ревизия установила падение образования в университете и крупную растрату казённых денег. В 1826 году Магницкого отстранили от должности, а ректором университета назначили Лобачевского. Этот год стал знаменательным для него ещё и потому, что он сделал научный доклад «Сжатое изложение основ геометрии со строгим доказательством теоремы о параллельных». Коллеги суть исследования не поняли, поэтому доклад не был напечатан.
В 1832 году Лобачевский послал в Петербургскую АН свой мемуар «О началах геометрии». Отзыв академика Остроградского был отрицательным. В нём говорилось: «Автор, по-видимому, задался целью писать таким образом, чтобы его нельзя было понять. Он достиг этой цели; большая часть книги осталась столь же неизвестной для меня, как если бы я никогда не видал её. В ней я понял только следующее: Можно допустить, что сумма углов в треугольнике меньше, чем два прямых угла. Геометрия, вытекающая из этой гипотезы, труднее и пространнее той, которая известна нам…
Значение интеграла, данное на стр. 120, является поистине новым. Оно – достояние г-на казанского ректора. К несчастью, оно неверно.
…Всё, что я понял в геометрии г-на Лобачевского, ниже посредственного… Всё, что я не понял, было, по-видимому, плохо изложено по той же самой причине, что в нём трудно разобраться. Из этого я вывел заключение, что книга г-на ректора Лобачевского опорочена ошибкой, что она небрежно изложена и что, следовательно, она не заслуживает внимания академии». (Советский математик В.Ф. Каган в книге «Лобачевский» показал, что заявление М.В. Остроградского об ошибке в интеграле в книге Н.И. Лобачевского неправильно.)
Через год в журнале «Сын Отечества» появился анонимный фельетон с издёвками над учёным, пытающимся создать новую геометрию: «Есть люди, которые, прочитав иногда одну книгу, говорят: она слишком проста, слишком обыкновенна, в ней не о чём и подумать. Таким любителям думанья советую прочесть геометрию Лобачевского. Вот уж подлинно есть о чём подумать. Многие из первоклассных наших читали её, думали и ничего не поняли…
Даже трудно было бы понять и то, каким образом г. Лобачевский из самой лёгкой и самой ясной в математике, какова геометрия, мог сделать такое тяжёлое, такое тёмное и непроницаемое учение …Чего не может представить воображение, особливо живое и вместе уродливое! Почему не вообразить, например, чёрное – белым, круглое – четырёхугольным, сумма всех углов в прямолинейном треугольнике меньше двух прямых?..
…Почему бы вместо заглавия “О началах геометрии” не написать, например, сатира на геометрию, карикатура на геометрию или что-нибудь подобное?..»
Николая Ивановича огорчил отзыв Остроградского и возмутил журнальный пасквиль. Некоторой компенсацией стала для него высокая оценка его работе на благо просвещения. Посетивший в 1836 году Казань император Николай I наградил Н.И. Лобачевского «за заслуги на службе и в науке» орденом Анны II степени, дававшим право на потомственное дворянство.
…Лобачевский вернул геометрии её первозданный смысл. Ведь она получила в Древней Греции название от имени богини Земли Геи, означая «изменение земли». Русский математик обратился к системам реальных измерений, которые, даже выполненные с безупречной точностью, не всегда подтверждаются аксиомами и теоремами Евклида. У больших треугольников на земном шаре сумма углов будет меньше 180°, а четырёхугольника – меньше 360°. Такова реальность!
Для осуществления подобных измерений на земной поверхности во времена Лобачевского требовалось немалое воображение (отсюда и название его мемуара – «Воображаемая геометрия»). Но это не выдумки, мечтания, а обращение к действительности.
Измерения в системе Евклида помимо идеальных приборов предполагают идеальное пространство, в частности космическую среду с определёнными свойствами «прямизны». Лобачевский не принял на веру такое предположение. Он считал, что эту идею «проверить, подобно другим физическим законам, могут лишь опыты, каковы, например, астрономические наблюдения».