Струны могут быть либо разомкнутыми, либо кольцеобразными, и эта конфигурация определяет их взаимодействие с другими струнами.
Теория струн автоматически соотносит каждую частицу с полуцелым спином (частицу-переносчицу) с частицей с целым спином (материей) и наоборот. Именно потому, что она включает в себя суперсимметрию, эта теория называется теорией суперструн. Как уже говорилось, учёным ещё не удалось обнаружить ни одного суперпартнёра существующих частиц, хотя приверженцы теории струн полагают, что они просто слишком массивны, чтобы их можно было получить в БАК.
Теория струн устраняет потенциальный конфликт между двумя важнейшими идеями физики: редукционизмом и унификацией. Первая концепция предполагает, что все явления в мире происходят в результате взаимодействия небольшого количества фундаментальных строительных блоков (в Стандартной модели — кварков и лептонов). Вторая утверждает, что несхожие природные явления представляют собой лишь разные грани одного фундаментального процесса, например электрическое и магнитное поля являются всего лишь аспектами единого электромагнитного поля.
Редукционизм, доведённый до логического завершения, должен продемонстрировать, что всё во Вселенной состоит из элементов одного типа. Но если такой строительный блок действительно фундаментален, то есть не имеет составляющих, которые можно поменять местами, как он может иметь разные аспекты? Это невозможно, если речь идёт о частице, похожей на точку, но допустимо, если такой блок представляет собой одномерную струну, способную на множество типов колебаний. Соответственно, конфликт между редукционизмом и унификацией исчезает.
Фундаментальные частицы не просто имеют определённые массы, которые можно соотнести с частотой вибрации струны. Они также взаимодействуют друг с другом с помощью фундаментальных сил. В 1915 году Эйнштейн продемонстрировал, что сила притяжения — это лишь проявление искривления четырёхмерного пространства-времени, а в 1920-х годах два физика решили развить эту идею. Независимо друг от друга Теодор Калуца и Оскар Клейн доказали, что если бы пространство-время имело ещё одно, пятое пространственное измерение, то последствиями его искривления могли бы быть и гравитация,
Согласно схеме Калуцы и Клейна, даже когда субатомная частица находится в покое в обычном пространстве, в пятом измерении она вращается по кругу, как сумасшедшая белка в колесе. Момент этого вращения и
В 1920-х годах, когда Калуца и Клейн высказали своё предположение, сильное и слабое ядерное взаимодействие, действующие лишь в микроскопических масштабах атомного ядра, ещё не были открыты. Но их поведение можно сымитировать, добавив ещё несколько пространственных измерений, свёрнутых до сверхмалых размеров. В конечном итоге таких измерений нам потребуется шесть. Соответственно, гипотетические струны могут вибрировать в десятимерном пространстве-времени (девяти пространственных и одном временно́м измерении).
Физик и автор научно-популярных книг Брайан Грин из Колумбийского университета в Нью-Йорке пишет: «Сначала приходит Эйнштейн и говорит: “Пространство и время могут изгибаться и искривляться — это и есть гравитация”. А потом приходит теория струн и добавляет: “Не только гравитация, а ещё и квантовая механика и электромагнетизм, но только если во Вселенной больше измерений, чем мы можем увидеть».[263]
«Сначала людям не нравились дополнительные измерения, — рассказывает специалист по теории струн Эдвард Виттен из Института перспективных исследований в Принстоне, — но они приносят большую пользу. Благодаря им теория струн может описать все элементарные частицы и их взаимодействия, включая гравитационное».
Плюсы и минусы теории струн