Читаем Гравитация От хрустальных сфер до кротовых нор полностью

Но если есть уравнения, значит их нужно решать. То есть при ограничениях и условиях каждой конкретной задачи или модели нужно найти метрические коэффициенты в каждой точке пространства–времени и тем самым определить его геометрические свойства. Также необходимо найти, как в этом пространстве–времени распределена, движется и взаимодействует материя. Система гравитационных и материальных уравнений решается одновременно. Если можно так сказать, материя, искривляя пространство–время, распространяется в этом уже искривлённом собой пространстве–времени. То есть процесс «сцепленный». Именно поэтому изначально система гравитационных и материальных уравнений строилась как совместная. Однако чтобы система имела решения, нужно чтобы условия и ограничения модели также не были противоречивыми.

Уравнения Эйнштейна носят локальный характер, как и многие другие уравнения физики. Это значит, что величины, которые в них входят, относятся по отдельности к каждой точке пространства–времени (или его части), где модель определена или задача рассматривается. В этой связи рассуждения, которые привели к уравнениям, требуют дальнейшего пояснения. Может показаться, что если в некоторой точке (и её окрестности) нет материи, то в этой окрестности нет и кривизны. Это, конечно, неправильный вывод. Связь материи и искривлённости пространства-времени была использована, чтобы построить непротиворечивую (совместную) систему уравнений. После того как уравнения представлены, решать их можно (и нужно) и с нулевой правой частью тоже, то есть в отсутствие материи вообще. Эти решения называют вакуумными. Действительно, гравитирующее тело должно «продавливать» пространство–время не только в той части, где оно находится, но и на достаточном удалении, где никакой материи нет, то есть в вакууме. В противном случае просто не будет гравитационного взаимодействия. По этому поводу полезно привести аналогию с упругой плоской линейкой: её нельзя изогнуть только в одном месте, поскольку это будет означать, что она просто сломана. Так и здесь, если бы материя никак не прогибала окружающий вакуум, то на границе всегда возникали бы разрывы в описании различных физических величин, чего не наблюдается.

Уравнения в вакууме нужно решать, чтобы узнать насколько этот вакуум «продавлен» соседней материей. На конец, некоторые решения вакуумных уравнений представляют такие важные решения, как гравитационные волны, которые представляют собой свободное (без всякой материи) распространение метрических возмущений, о чем говорится в главе о гравитационных волнах.

Как только уравнения были получены, Эйнштейн стал искать их важные решения, в том числе и космологические. В то время считалось, что Вселенная статична А статическое космологическое решение никак не получалось — как выяснилось, оно просто не существует. Чтобы спасти статическое решение, Эйнштейн немного изменил уравнения. Это оказалось возможным без нарушения закона сохранения для левой части. К тензору Эйнштейна можно добавить член с так называемой космологической постоянной — Λ. Уравнения Эйнштейна в 1917 году приобрели вид:

Это не помогло — статическое космологическое решение этих уравнений существует, но это решение неустойчиво, следовательно, не может быть моделью реального мира. Тем не менее, понятие космологической постоянной оказалось востребованным, особенно в последнее время.

5. Координаты Леметра

В этом дополнении мы обсуждаем координаты для чёрной дыры Шварцшильда, свободные от дефектов на горизонте. Их предложил Леметр, как систему отсчёта, сопутствующую свободно падающим наблюдателям. Смысл её в том, что в каждую точку пространства помещается наблюдатель. Наблюдатели никак не взаимодействуют между собой, они лишь свободно падают к центру, формально представляя собой точки. Каждому наблюдателю приписываются три пространственных координаты, которые вместе образуют пространственные координаты всего пространства–времён и. А собственное время каждо

Рис. Д1. Пространство–время геометрии Шварцшильда в сопутствующих координатах Леметра

го наблюдателя вместе определяет координатное время новой системы отсчёта. Форма решения сохраняет сферическую симметрию, поэтому можно сказать, что Леметр сделал переход от шварцшильдовых координат t и r к координатам сопутствующих наблюдателей (сопутствующей системе отсчёта) τ и R.

Мы не приводим форму решения Леметра, а вот диаграмма на рис. 8.2 в его координатах принимает форму, представленную на рис. Д1. Обсудим её. Наклонные на рис. Д1 соответствуют вертикальным линиям постоянных значений координаты r

на рисунке 8.2, включая линии горизонта r = rg и сингулярности r =0. Вертикальные на рис. Д1 — мировые линии сопутствующих наблюдателен. Как видно, они без помех пересекают горизонт.

Перейти на страницу:

Похожие книги

Т. 2.  Ересиарх и К°. Убиенный поэт
Т. 2. Ересиарх и К°. Убиенный поэт

Гийом Аполлинер (1880–1918) — одно из самых значительных имен в истории европейской литературы. Завершив классический период французской поэзии, он открыл горизонты «нового лирического сознания». Блестящий прозаик, теоретик искусства, историк литературы, критик, журналист, драматург — каждая область его творчества стала достоянием культуры XX века.Впервые выходящее трехтомное Собрание сочинений Аполлинера представляет на суд читателя не только избранную лирику Гийома Аполлинера, но прежде всего полный перевод его прозаических сборников «Ересиарх и Кº» (1910) и «Убиенный поэт» (1916) — книг, в которых Аполлинер выступает предвестником главных жанров европейской прозы нашего времени. Аполлинер-прозаик находится в центре традиции, идущей от Гофмана и Эдгара По к Марселю Эме и Пьеру Булю.Во второй том Собрания сочинений вошли сборники рассказов «Ересиарх и Кº» и «Убиенный поэт».

Гийом Аполлинер

Научная литература / Прочая научная литература / Образование и наука
Москва и Орда
Москва и Орда

Монография посвящена отношениям Московского княжества и Золотой Орды с конца XIII до начала XVI в. В ней, в отличие от предшествующей историографии, уделявшей серьёзное внимание лишь двум ключевым эпизодам — Куликовской битве и освобождению от власти Орды, — последовательно рассматривается развитие московско-ордынских отношений на протяжении двух с половиной столетий. В результате выясняется, что устоявшиеся (хотя и противоречащие друг другу) постулаты — «поддержка Ордой Москвы» и «борьба с ордынским игом» — мало соответствуют исторической реальности. По-новому решаются такие вопросы, как отношение к Орде первых московских князей — Даниила Александровича и Юрия Даниловича, последствия конфликта Дмитрия Донского с Тохтамышем 1382 г., датировка и обстоятельства освобождения Москвы от ордынской зависимости.Для историков и широкого круга читателей, интересующихся историей Отечества.

Антон Анатольевич Горский

История / Научная литература / Образование и наука