Читаем Гравитация. От хрустальных сфер до кротовых нор полностью

Проследим за формой световых конусов на рис. Д1. Вне горизонта наклон «лепестков» превосходит 45o, на горизонте он равен 45o, а под горизонтом становится все меньше: конусы сужаются при приближении к «центру». Поскольку распространение лучей света происходит как раз по направлению конусов, а материальных частиц – по мировым линиям внутри конусов, то ясно, что вне горизонта r = rg возможно движение с удалением от горизонта во внешнюю область. По достижении горизонта такое движение невозможно. Под горизонтом становится неизбежным движение к «центру».

6. Система отсчета ускоренных наблюдателей

После того как определены понятия пространства Минковского в главе 5, собственного времени в главе 7 и горизонта событий в главе 8, интересно обсудить пространство-время ускоренных наблюдателей. Пусть один из таких наблюдателей движется прямолинейно вдоль оси x в пространстве Минковского с постоянным ускорением c2/X в направлении x. Пусть таких наблюдателей много и их ускорения меняются от бесконечности до нуля, что соответствует изменению X от 0 до .

На рис. Д2 на диаграмме пространства Минковского в лоренцевых координатах x и t изображены мировые линии таких ускоренных наблюдателей: каждому наблюдателю соответствует свое значение X. Чем больше ускорение наблюдателя, тем его мировая линия ближе к началу координат. Ускорение каждого из них направлено в сторону увеличения x. Поэтому изначально двигаясь к началу координат, они снижают скорость до нуля при

t = 0, а затем движутся в обратном направлении.

Рис. Д2. Мировые линии ускоренных наблюдателей


Поскольку скорости этих наблюдателей не могут превысить световые, то их мировые линии ограничены световыми конусами: A0 и 0A+, они вместе образуют так называемый «угол Риндлера». Кроме того, угол Риндлера – это предельная мировая линия наблюдателя, ускорение которого стремится к бесконечности. Эти конусы имеют смысл горизонта событий. Конус A0 является горизонтом событий прошлого – ускоренные наблюдатели никак не могут повлиять на события за этим горизонтом. Конус 0A+ является горизонтом событий будущего, поскольку ускоренным наблюдателям недоступны для наблюдения события за этим горизонтом. Этот горизонт аналогичен горизонту шварцшильдовой черной дыры, в чем легко убедиться, сравнив рис. Д2 с диаграммой в координатах Леметра на рис. Д1.

Точно так же, как была представлена пространственно-временная диаграмма для сопутствующих наблюдателей в координатах Леметра, можно представить пространственно-временную диаграмму для равномерно ускоренных наблюдателей. Для этого каждому такому наблюдателю сопоставляют свою пространственную координату со значением X.

Тогда метрика пространства Минковского (вернее его части, заключенной в углу Ринд-лера), в координатах этих ускоренных наблюдателей принимает форму:

ds2 = (X/X0) 2c 2dT 2dX 2dY

2dZ 2.

Здесь X0 – произвольный пространственный масштаб, позволяющий сохранить размерность, кроме того, для наблюдателя, у которого X = X0, эта система является локально лоренцевой. Эти координаты введены американским физиком Вольфгангом Риндлером, и представлены на диаграмме на рис. Д3. Каждому ускоренному наблюдателю соответствует вертикальная прямая с соответствующим значением X. Вертикальная прямая X = 0 соответствует горизонту Риндлера. Если время T является координатным временем в системе Риндлера, то собственным временем для ускоренного наблюдателя является  = (g00)1/2T

= XT/X0, как это было определено в главе 7.

Рис. ДЗ. Координаты Риндлера


Для ускоренного наблюдателя с параметром X0 собственное время совпадает с координатным. Собственное время ускоренных наблюдателей идет тем быстрее, чем больше X, и тем медленнее, чем меньше X. В этом проявляется сильный принцип эквивалентности (глава 6) – ускорение имитирует действие гравитационного поля, где ход часов замедляется тем сильнее, чем больше потенциал.

На горизонте собственное время «замораживается», в этом смысле ситуация аналогична поведению собственного времени для наблюдателей в пространстве-времени шварцшильдовой черной дыры. Если мы проследим за формой светового конуса, то для наблюдателя X0 его «лепестки» наклонены под «стандартным» углом 45° (это как раз потому, что для него система Риндлера оказалась локально лоренцевой). Для больших X угол наклона «лепестков» увеличивается, для меньших X – уменьшается. На горизонте «лепестки» световых конусов вообще слипаются, точно также, как на горизонте на диаграмме Шварцшильда, см. рис. 8.2. Горизонт в метрике Риндлера представляет лишь координатную особенность, как и горизонт в координатах Шварцшильда. Но поскольку система ускоренных наблюдателей – это система в пространстве Минковского, то в отличие от решения Шварцшильда, «решение Риндлера» не имеет истинной сингулярности.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука