Интересно, что термоядерная реакция на Солнце протекает очень медленно. Нужно несколько миллионов лет, чтобы четыре атома водорода превратились в ядро гелия. Поэтому тепло, излученное десятками тонн солнечного вещества в сутки, недостаточно, чтобы вскипятить один стакан воды. При таком медленном процессе только благодаря участию гигантских масс возможно выделение Солнцем огромного количества тепла. Если применить известный уже нам закон взаимосвязи массы и энергии, то оказывается, что наше Солнце излучает такую огромную энергию, что вместе с этой энергией каждую секунду Солнце теряет четыре с половиной миллиона тонн своего веса. Правда, для Солнца эта потеря совершенно ничтожна. Масса его настолько велика, что за два миллиарда лет своего непрерывного излучения Солнце теряет не больше одной десятой процента своего веса.
Естественно, что в результате ядерных реакций содержание водорода на Солнце уменьшается, и после того как весь водород израсходуется, выделение энергии прекратится: Солнце погаснет. Но и здесь опасаться незачем. Сейчас на Солнце столько водорода, что его хватит, как показывают подсчеты, на 100 миллиардов лет.
Солнце на земле.
Мы приходим с вами к удивительному выводу. Оказывается, человечество за все время своего существования всегда использовало ядерную энергию — энергию Солнца. Действительно, мы уже говорили, что какой бы источник энергии мы ни имели на земле, его происхождение неразрывно связано с Солнцем.Однако земля получает ничтожную часть энергии ядерных реакций, происходящих на Солнце. Еще меньшую часть полезно расходуем мы для наших нужд. И, безусловно, прав академик Несмеянов, когда он сказал в 1955 году на сессии Академии наук: «Настало время вместо использования жалких крох консервированной в том или ином виде на нашей планете колоссальной энергии Солнца создать свое Солнце на земле». Не правда ли, это звучит как фантазия? Но мы не привыкли слышать из уст выдающегося ученого, президента Академии наук, фантастические идеи. Разве фантазия электростанции, использующие ядерную энергию деления урана, двигатели на атомном горючем? Еще ближе мы подойдем к цели, когда сумеем получить управляемую термоядерную реакцию, подобную реакциям, идущим на нашем большом Солнце. Тогда мы действительно создадим свое Солнце на земле.
На этом пути ученым предстоит решить еще очень много трудных задач. Мы обладали до сих пор единственным средством, позволяющим получать температуру в миллионы градусов, необходимую для осуществления термоядерных реакций. Это — взрыв атомной бомбы. Она и применяется в качестве детонатора для термоядерного, водородного оружия. Но, конечно, невозможно применять для промышленных целей атомную бомбу. Поэтому прежде всего надо было найти возможность «зажигать» термоядерные реакции, не прибегая к атомному взрыву, то есть построить прибор, позволяющий получать температуру в миллион градусов.
Хотя наиболее выгодной ядерной реакцией является соединение ядер обычного водорода, но, к сожалению, осуществление термоядерной реакции на земле на таком горючем вряд ли возможно. Значительно проще осуществить термоядерные реакции на тяжелом водороде (дейтерии) и особенно легко — на сверхтяжелом водороде (тритии). Эти реакции уже используются в водородной бомбе.
Дейтерия на земле — огромные запасы. Он содержится в любой воде в небольшом количестве: примерно 0,015 процента к имеющемуся там водороду. Но ведь вода в земных океанах неисчерпаема. Было бы очень заманчивым использовать этот источник энергии в мирных целях. Быстрорастущие потребности человечества в энергии были бы обеспечены на миллиарды лет. Над этой проблемой работают многие ученые в различных странах. Исследования, проведенные советскими и зарубежными учеными в последние годы, показали, что имеются реальные пути к решению этой великой задачи.
Магнитный мешок.
Для того чтобы нагреть водород до миллиона градусов, нужна небольшая энергия. Для одного грамма дейтерия это всего несколько киловатт-часов. Трудность заключается в том, что при таких температурах атомы и молекулы газов обладают огромными скоростями и разбегаются в разные стороны. Давление газа достигает миллионов атмосфер. Тепло переходит от дейтерия к окружающему веществу, к стенкам сосуда, в котором происходит это нагревание. Естественно, что в этом случае мы уже будем затрачивать огромную энергию на нагревание сосуда. Нагреть нам дейтерий так не удастся. Да и какой сосуд выдержит температуру в миллионы градусов и давление в миллионы атмосфер? Надо было придумать такую термоизоляцию, которая дала бы возможность стенкам сосуда оставаться холодными в то время, когда газ в сосуде имеет температуру в миллионы градусов. Кроме того, нужно, чтобы давление на стенки сосуда не было бы слишком высоким. Казалось бы, что эта задача неразрешима. Но решение было найдено.