Если мы взглянем теперь на известные нам эйдетические науки, то нам бросится в глаза, что они не следуют описательным методам,
то есть, к примеру, геометрия не схватывает в единичных интуициях, не описывает и не упорядочивает в классификациях низшие эйдетические дифференций, то есть бесчисленное множество фигур, какие можно изобразить в пространстве, то есть поступает не так, как дескриптивные науки о природе поступают с эмпирическими природными образованиями. Наоборот, геометрия фиксирует лишь немногие виды основных фигур, а также идеи тела, плоскости, точки, угла и т. д. — те самые, которые играют определяющую роль и в «аксиомах». С помощью аксиом, то есть первоначальных сущностных законов, геометрия оказывается в состоянии чисто дедуктивно выводить все «существующие» в пространстве, т. е. идеально возможные пространственные фигуры и все принадлежащие к ним сущностные отношения, производя это в форме точно определенных понятий, репрезентирующих сущности, в основном чуждые нашей интуиции. Сущность области геометрии и устроена, по мере ее рода, так, и так устроена чистая сущность ее пространства, что геометрия может быть вполне уверена в действительном и точном владении всеми своими возможностями, согласно ее методу. Другими словами, многообразие пространственных фигур вообще обладает замечательной фундаментальной логической особенностью, для которой мы вводим наименование «дефинитного» многообразия, или же «математического многообразия в точном смысле слова».Такое многообразие характеризуется тем, что конечное число
почерпаемых в сущности соответствующей области понятий и теорем полностью и однозначно, по способу чисто аналитической необходимости, определяет совокупность всех возможных внутри этой области образований, так что внутри этой области в принципе совсем не остается открытых вопросов.Поэтому мы может сказать и так: подобное многообразие обладает особо отмеченным свойством быть математически исчерпывающе дефинируемым. «Дефинируемость»
заключена в системе аксиоматических понятий и аксиом, а «математически-исчерпывающее» — в том, что дефиниционные утверждения, соотносимые с многообразием, имплицируют предельно мыслимую предопределенность — не остается ничего, что не получало бы определения.Эквивалент понятия дефинитного многообразия заключается также и в следующих положениях:
Всякое высказывание, образуемое из отмеченных аксиоматических понятий, согласно каким бы логическим формам то ни совершалось, всегда есть чисто формально-логическое следствие аксиом или же точно такое же ложное противоследствие, то есть следствие, формально противоречащее аксиомам, так что в таком случае контрадикторное противоречие — это формально-логическое следствие аксиом. Внутри математически-дефинитного многообразия понятие «истинного» ипонятие «формально-логического следствия» эквивалентны,
и точно так же эквивалентны понятие «ложного» и понятие «формальнологического противоследствия аксиом».Я называю дефинитной системой аксиом
такую, которая чисто аналитическим способом «исчерпывающе дефинирует» многообразие, как то описано выше; всякая дедуктивная дисциплина, опирающаяся на подобную систему аксиом, есть дефинитная, или в точном смысле слова математическая дисциплина.Все дефиниции продолжают существовать и тогда, когда мы оставляем в полной неопределенности материальные различения внутри многообразия, то есть производим формализующее обобщение. Тогда система аксиом преобразуется в систему аксиоматических форм, многообразие — в форму многообразия, дисциплина, соответствующая такому многообразию, в форму дисциплины.[70]
§ 73. Применение к проблеме феноменологии. Описание и точное определение