Читаем Идиот или гений? Как работает и на что способен искусственный интеллект полностью

Участники Дартмутского семинара 1956 года озвучивали разные мнения о правильном подходе к разработке ИИ. Одни – в основном математики – считали, что языком рационального мышления следует считать математическую логику и дедуктивный метод. Другие выступали за использование индуктивного метода, в рамках которого программы извлекают статистические сведения из данных и используют вероятности при работе с неопределенностью. Третьи твердо верили, что нужно черпать вдохновение из биологии и психологии и создавать программы по модели мозга. Как ни странно, споры между сторонниками разных подходов не утихают по сей день. Для каждого подхода было разработано собственное множество принципов и техник, поддерживаемых отраслевыми конференциями и журналами, но узкие специальности почти не взаимодействуют между собой. В недавнем исследовании ИИ отмечается: “Поскольку мы не имеем глубокого понимания интеллекта и не знаем, как создать общий ИИ, чтобы идти по пути настоящего прогресса, нам нужно не закрывать некоторые направления исследований, а принимать «анархию методов», царящую в сфере ИИ”[27].

Однако с 2010-х годов одно семейство ИИ-методов, в совокупности именуемых глубоким обучением (или глубокими нейронными сетями), выделилось из анархии и стало господствующей парадигмой ИИ. Многие популярные медиа сегодня ставят знак равенства между понятиями “искусственный интеллект” и “глубокое обучение”. При этом они совершают досадную ошибку, и мне стоит прояснить различия между терминами. ИИ – это область, включающая широкий спектр подходов, цель которых заключается в создании наделенных интеллектом машин. Глубокое обучение – лишь один из этих подходов. Глубокое обучение – лишь один из множества методов в области “машинного обучения”, подобласти ИИ, где машины “учатся” на основе данных или собственного “опыта”. Чтобы лучше понять эти различия, нужно разобраться в философском расколе, который произошел на заре исследования ИИ, когда произошло разделение так называемых символического и субсимволического ИИ.

Символический ИИ

Давайте сначала рассмотрим символический ИИ. Программа символического ИИ знает слова или фразы (“символы”), как правило понятные человеку, а также правила комбинирования и обработки этих символов для выполнения поставленной перед ней задачи.

Приведу пример. Одной ранней программе ИИ присвоили громкое имя “Универсальный решатель задач” (General Problem Solver, или GPS)[28]. (Прошу прощения за сбивающую с толку аббревиатуру: Универсальный решатель задач появился раньше системы глобального позиционирования, ныне известной как GPS.) УРЗ мог решать такие задачи, как задача о миссионерах и людоедах, над которой вы, возможно, ломали голову в детстве. В этой известной задаче три миссионера и три людоеда должны переправиться через реку на лодке, способной выдержать не более двух человек. Если на одном берегу окажется больше (голодных) людоедов, чем (аппетитных) миссионеров, то… думаю, вы поняли, что произойдет. Как всем шестерым переправиться на другой берег без потерь?

Создатели УРЗ, когнитивисты Герберт Саймон и Аллен Ньюэлл, записали, как несколько студентов “размышляют вслух”, решая эту и другие логические задачи. Затем Саймон и Ньюэлл сконструировали программу таким образом, чтобы она копировала ход рассуждений студентов, который ученые признали их мыслительным процессом.

Я не буду подробно описывать механизм работы УРЗ, но его символическую природу можно разглядеть в формулировке программных инструкций. Чтобы поставить задачу, человек писал для УРЗ подобный код:

ТЕКУЩЕЕ СОСТОЯНИЕ:

ЛЕВЫЙ-БЕРЕГ = [3 МИССИОНЕРА, 3 ЛЮДОЕДА, 1 ЛОДКА]

ПРАВЫЙ-БЕРЕГ = [ПУСТО]


ЖЕЛАЕМОЕ СОСТОЯНИЕ:

ЛЕВЫЙ-БЕРЕГ = [ПУСТО]

ПРАВЫЙ-БЕРЕГ = [3 МИССИОНЕРА, 3 ЛЮДОЕДА, 1 ЛОДКА]

Если говорить обычным языком, эта инструкция показывает, что изначально левый берег реки “содержит” трех миссионеров, трех людоедов и одну лодку, в то время как правый не содержит ничего. Желаемое состояние определяет цель программы – переправить всех на правый берег реки.

На каждом шаге программы УРЗ пытается изменить текущее состояние, чтобы сделать его более похожим на желаемое состояние. В этом коде у программы есть “операторы” (в форме подпрограмм), которые могут преобразовывать текущее состояние в новое состояние, и “правила”, кодирующие ограничения задачи. Например, один оператор перемещает некоторое количество миссионеров и людоедов с одного берега реки на другой:

ПЕРЕМЕСТИТЬ (#МИССИОНЕРОВ, #ЛЮДОЕДОВ, С-БЕРЕГА, НА-БЕРЕГ)

Перейти на страницу:

Похожие книги

Мир на пороге войны
Мир на пороге войны

Джульетто Кьеза – один из самых известных политиков Европы. Автор документального фильма «Зеро» (Zero), раскрывшего провокационный характер разрушения башен-близнецов ВТЦ в Нью-Йорке и обвинявшего в организации этого теракта реакционные политические круги США.В данной книге представлены его работы разных лет, в которых автор анализирует положение в мире, рассуждает о современной роли России, даёт оценку тем или иным событиям и прогнозирует развитие международной ситуации. В частности, он предупреждает о вероятности Третьей мировой войны, которую стремятся развязать США.В чем видит Кьеза подтверждение своих прогнозов? Как Россия может стать последней преградой на пути новой большой войны? Что будет в ближайшем будущем с ведущими мировыми державами? Что ожидает мировую экономику и мировые валюты? Куда движется наш мир? Прогноз будущего от Джульетто Кьеза – самого знаменитого антиглобалиста Европы.Над материалами данной книги Джульетто Кьеза работал вместе с Екатериной Глушик. Глушик Екатерина Федоровна – писатель, публицист, литературный критик, автор «Литературной газеты» и газеты «Завтра». Автор десяти книг. Лауреат премий «Эврика» и «Лучшая книга года», дипломант премии им. А. Н. Толстого, победитель конкурса журналистских работ «Беларусь – Россия. Шаг в будущее».

Джульетто Кьеза , Екатерина Фёдоровна Глушик , Тимур Джафарович Агаев

Публицистика / Учебная и научная литература / Образование и наука