Таблица 8.1 и рис. 8.1 показывают, что
Даже при такой аккуратной формулировке в задаче есть допущения, которые могут исказить решение. Меньшим из допущений было не принимать в расчет високосные годы. Гораздо большим допущением было игнорирование того факта, что дни рождения не распределяются по календарю в случайном порядке, как нам может казаться. Мы знаем, что дни рождения склонны образовывать скопления по причинам, связанным с праздниками, природными катаклизмами, временами года и другими непостижимыми диспропорциями.
Есть несколько любопытных моментов. Чтобы иметь шансы выше, чем 1 к 1, что у 3 человек совпадают дни рождения, можно подумать, что потребуется еще примерно 23 человека. Верное число – 88. Для 4 совпадающих дней рождения это число становится уже 187{83}
. Таблицы 8.2 и рис. 8.2 показывают, как растут числа, гдеСтандартная задача о дне рождения была предложена Рихардом Мизесом, урожденным галичанином, который в 1933 г. предусмотрительно покинул Берлин и занял пост в Стамбульском университете, где проделал отличную работу в области механики жидких сред, аэродинамики и теории вероятностей. В 1939 г. он приехал в США, где занял должность в Гарварде{85}
.Задача эта многогранна. С одной стороны, это задача комбинаторики. Мы даже можем рассматривать ее как сугубо гипотетическую задачу об игральных костях: вы бросаете игральную кость с 365 сторонами 23 раза и находите вероятность того, что она дважды выпадет одной стороной. (Это гипотетический мысленный эксперимент, потому что реальной «правильной» игральной кости с 365 гранями не существует.) С другой стороны, можно пронумеровать все дни в году и перемешать, получив случайный набор чисел. Можно напечатать числа от 1 до 365 на пластиковых фишках, поместить во вращающийся барабан и выбирать по одной фишке
Если мы слегка изменим задачу и рассмотрим ситуацию, когда люди встречаются, скажем, на национальной конференции, то у скольких из них могут совпасть последние 4 цифры в номере социального страхования? Задача похожа на описанную выше. Единственным отличием будет то, что число 365 меняется на 9999, учитывая предположение о том, что ни у кого нет номера, заканчивающегося на 0000. С учетом этого предположения существует шанс выше, чем 1 к 1, что на конференции со 118 участниками у 2 из них совпадут последние 4 цифры номера социального страхования{87}
.Эти последние 4 цифры не имеют никакой закономерности и практически независимы от даты рождения владельца.
Непосредственно перед тем, как я начал писать эту книгу, Агнесс, соавтор онлайн-журнала для женщин, как-то узнала о том, что я работаю над книгой о совпадениях. «Уважаемый профессор Мазур, я прошу прощения, мой вопрос может показаться странным, – пишет она мне на электронную почту. – Насколько вероятно встретить человека (встретить лично, не в результате поиска через Интернет), у которого та же дата рождения, что и у вас (день, месяц и год)? Со мной это произошло дважды, по иронии судьбы в знаменательные моменты моей жизни».
До этого момента я никогда не задумывался над этим сложным вопросом. Однако по зрелом размышлении я быстро пришел к заключению, что его анализ дает нам математический аппарат практически для любого совпадения. Агнес спрашивает не о вероятности того, что у
Как найти ответ? Мы говорим уже не о 365 днях, а о тысячах дней. Каковы переменные? Вопрос Агнесс касается не дат рождения любых двух людей, а