Читаем Игра в имитацию полностью

Проблема казалась слишком сложной, чтобы попытаться решить ее, записав таблицу определенных действий для ее решения. И все же существовал один метод, который позволял довольно изворотливо подойти к решению вопроса. Тогда Алан стал думать о «вычислимых числах». Основная идея заключалась в том, что любое «действительное число» могло быть вычислено одной из его машин. К примеру, можно было создать машину, чтобы вычислить разложение на десятичные дроби числа . Для этого потребовалось лишь записать ряд действий по сложению, умножению, копированию, и так далее. В случае бесконечного десятичного ряда, машина продолжала бы непрерывно работать и потребовалось бы неограниченное количество ячеек на ее ленте. Однако устройство могло высчитывать каждый десятичный разряд за определенное количество времени, при этом используя определенную длину рабочей ленты. А вся информация о процессе могла быть записана в таблицу переходов с определенным количеством записанных конфигураций.

Таким образом, он нашел способ представить такое число, как , с бесконечным десятичным разложением в виде таблицы с конечным числом действий. То же самое можно было проделать и с квадратным корнем из трех, или с натуральным логарифмом семи, или с любым другим числом, вычисляемым по некоторому правилу. Подобные числа он назвал «вычислимыми числами».

Точнее говоря, сама машина не обладала бы никакими знаниями о десятичных числах или десятичных разрядах. Она могла лишь производить последовательность цифр. Последовательность, которая могла быть произведена одной из его машин, Алан назвал «вычислимой последовательностью». Тогда вычислимая бесконечная последовательность, перед которой стояла десятичная запятая, могла определить «вычислимое число» между 0 и 1. Это означало, что любое вычислимое число между 0 и 1 могло быть определено в виде таблицы с конечным числом действий. Для Алана оставалось важным, чтобы вычислимые числа всегда были представлены в виде бесконечной последовательности цифр, даже если все цифры после определенного момента были нулями.

Теперь все эти таблицы с конечным числом действий можно было расположить в некотором роде по алфавитному порядку, начиная с самой простой и заканчивая наиболее большой и сложной. Их можно было представить в виде списка или посчитать; и это означало, что все вычислимые числа также можно было представить в виде списка. Разумеется, выполнить на практике подобное было достаточно сложно, но идея была довольно ясной: квадратный корень из трех в таком случае будет значиться 678-м в списке, а логарифм числа — 9369-м. Такая мысль казалась потрясающей, поскольку в такой список могло войти любое число, полученное в результате выполнения арифметических действий, например, вычисления корня уравнения, или используя математические функции, например, синусы и логарифмы, — любое число, которое могло возникнуть в сфере вычислительной математики. И в тот самый момент, когда он пришел к этой мысли, он узнал ответ на третий вопрос Гильберта. Возможно, именно это он неожиданно понял, остановившись отдохнуть на лугу в Гранчестере. И полученному ответу он был обязан прекрасному математическому устройству, которое все это время ожидало своего часа.

Всего полвека назад, кантор пришел к мысли, что можно поместить все дроби — все рациональные числа — в единый список. Наивно было полагать, что дробей существовало больше, чем целых чисел. Но Кантор смог доказать, что в узком смысле это предположение было неверным, поскольку все они могли быть подсчитаны и помещены в список с алфавитным порядком. Не принимая во внимание дроби с сокращающимся множителем, список всех рациональных чисел между 0 и 1 начинался бы следующим образом:

1/2 1/3 1/4 2/3 1/5 1/6 2/5 3/4 1/7 3/5 1/8 2/7 4/5 1/9 3/7 1/10…

Но Кантор не остановился на достигнутом и изобрел особый математический трюк, который получил название «диагональный метод Кантора» и мог быть использован в качестве доказательства существования иррациональных чисел. Для этого рациональные числа представлялись в виде бесконечных разложений десятичной дроби, и соответственно список всех подобных чисел между 0 и 1 начинался бы следующим образом:

5000000000000000000.…

3333333333333333333.…

2500000000000000000.…

6666666666666666666.…

2000000000000000000.…

1666666666666666666.…

4000000000000000000.…

7500000000000000000.…

1428571428571428571.…

6000000000000000000.…

1250000000000000000.…

2857142857142857142.…

8000000000000000000.…

1111111111111111111.…

4285714285714285714.…

1000000000000000000.…

……

……

Суть математической уловки Кантора состояла в том, чтобы рассмотреть диагональное число, начинающееся

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже