Читаем Информация или интуиция? полностью

«Закон суров, но это закон» — гласит древняя латинская пословица. Только что приведенный рассказ о приключениях закона Тициуса — Боде понадобился нам для того чтобы сформулировать один весьма важный для дальнейшего изложения вопрос: какими свойствами должно обладать некое утверждение, чтобы оно могло претендовать на звание физического закона или, иначе говоря, закона природы?Начнем с вопроса попроще: есть ли что-нибудь удивительное или даже попросту примечательное в том, что расстояния от Солнца до шести известных во времена И. Тициуса планет удовлетворяют, как это было обнаружено, некоторой математической формуле?Раздел математики, называемый теорией функции действительного переменного, учит нас, что всегда можно г конструировать функцию, проходящую через любое конечное число наперед заданных точек. Простейшей (в смысле способа получения) такой функцией является многочлен, порядок которого равен числу точек. Значит, какой бы совершенно случайный набор чисел мы ми взяли, всегда можно найти функцию, частными значениями которой оказались бы выбранные числа. Причем просим обратить внимание, что речь идет не о приближенных, а об абсолютно точных значениях чисел. Следовательно, мет ничего примечательного в том, что нашлась функция (в данном случае прогрессия), частными значениями которой оказались шесть данных чисел. Первоначальные восторги И. Тициуса оказываются явно неоправданными.Все сказанное в еще большей степени справедливо и для формулы М. Блэгг. У последовательного математика здесь могли бы возникнуть дополнительные соображения примерно такого рода. Для того чтобы заставить заданную функцию (необязательно многочлен) проходить через некоторое количество наперед заданных точек, вообще говоря, необходимо, чтобы эта функция зависела от такого же количества независимых постоянных, каково исходное число точек. Формула Блэгг зависит от четырех постоянных и удовлетворяется в случае солнечной системы для десяти точек (девять известных в настоящее время больших планет и пояс астероидов). Однако формула позволяет получить средние расстояния от Солнца до планет, хотя и с достаточно большой точностью, но все-таки приближенно.Для тех, кто любит рассуждать с математических позиций, мы можем прибавить, что функция, представляющая собой зависимость порядкового номера планеты от среднего расстояния ее от Солнца, — это весьма простая, так называемая монотонно возрастающая функция. Есть все основания предполагать, что если две монотонно возрастающие функции (имеется в виду истинная функция, выражающая зависимость среднего расстояния от Солнца от порядкового номера планеты, и функция Блэгг) совпадают в четырех точках, а именно этого добивалась мисс М. Блэгг, подбирая свои четыре постоянные, то они достаточно близки друг к другу на всем своем протяжении.Итак, нам остается еще раз повторить, что ни закон Тициуса — Боде, ни дальнейшие его модификации (в частности, формула Блэгг) абсолютно ничем не примечательны. С тем же успехом всегда можно найти математическую формулу, из которой можно было бы получить любой набор наперед заданных чисел.Следует оговориться, что все сказанное отнюдь не означает бесполезности усилий И. Тициуса, И. Боде и их последователей. Чтобы представить себе важность этих работ, приведем следующий пример. Для конструкторов самолетов и ракет, для пилотов, штурманов и многих других авиационных специалистов чрезвычайную важность представляют таблицы, описывающие зависимость таких параметров атмосферы, как давление, температура, плотность и тому подобных, например, от высоты. Таблицы эти весьма громоздкие, и поэтому огромную пользу приносят достаточно простые формулы, позволяющие вычислить, скажем, температуру воздуха на данной высоте. Но, конечно, никому не приходит в голову возводить эти формулы в ранг законов природы.Стоит, наверное, кратко сформулировать напрашивающийся вывод. Пусть имеется некоторый набор известных фактов и имеется утверждение (необязательно носящее количественный характер), из которого указанные факты следуют как частные случаи. Одного такого следования совершенно недостаточно, чтобы само утверждение можно было считать законом (природы), регламентирующим возникновение исходных фактов.Иное дело, когда некое утверждение позволяет предсказать факты, ранее неизвестные. Здесь положение резко меняется: нет никакой заслуги в том, чтобы построить функцию, проходящую, скажем, через двадцать любых наперед заданных точек. Но пройдет ли эта функция также и через двадцать первую точку, существование которой не было известно к моменту конструирования функции? Если такое произойдет, появляются все основания утверждать, что данная функция отражает некоторую внутреннюю закономерность, которой отвечает набор из двадцати одной точки.Именно поэтому серьезное внимание к закону Тициуса —- Боде было привлечено после того, как вновь открытая планета Уран оказалась именно там, где она должна была быть, следуя этому закону. Однако — увы! — на этом совпадения и кончились. Даже малые планеты: Цереру, Палладу и т. д. нельзя считать подтверждением закона Тициуса — Боде, поскольку предположение об их происхождении из одной большой планеты до сих пор всего лишь гипотеза. То же самое относится и к формуле Блэгг, поскольку при переходе от солнечной системы, например, к системе спутников Юпитера формулу пришлось «настраивать» заново.

Перейти на страницу:

Похожие книги

Еда. Отправная точка. Какими мы станем в будущем, если не изменим себя в настоящем?
Еда. Отправная точка. Какими мы станем в будущем, если не изменим себя в настоящем?

«Одни люди относятся к еде легко, для других она является темой многочисленных сомнений и размышлений.До недавнего времени я принадлежала ко второй категории: у меня тоже складывались непростые отношения с едой. И вот наконец, к собственному удивлению и радости, мне удалось перейти на другую сторону. В этой книге я постараюсь рассказать, как такое стало возможным».Эта книга подробно, шаг за шагом, описывает то, как рождаются наши пристрастия, симпатии и антипатии к разным продуктам и блюдам.С одной стороны, генетика, семейные традиции, социальное окружение очень влияют на формирование наших вкусов. С другой стороны, все не так безнадежно, как кажется на первый взгляд, если знать истоки, законы и осознанно идти на их изменение.Книга читается с большим интересом, в ней много историй о стремлении людей прийти к полезному и в то же время желанному образу жизни, в которой еда – самый основной ее источник.

Би Уилсон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Документальное
Чудесная жизнь клеток: как мы живем и почему мы умираем
Чудесная жизнь клеток: как мы живем и почему мы умираем

Что мы знаем о жизни клеток, из которых состоим? Скорее мало, чем много. Льюис Уолперт восполнил этот пробел, рассказав о клетках доступным языком, — и получилась не просто книга, а руководство для понимания жизни человеческого тела. Как клетки зарождаются, размножаются, растут и приходят в упадок? Как они обороняются от бактерий и вирусов и как умирают? Как злокачественные клетки образуют опухоли? Какую роль во всем этом играют белки и как структуру белков кодируют ДНК? Как воспроизводятся стволовые клетки? Как, наконец, из одной-единственной клетки развивается человек? И главный вопрос, на который пока нет однозначного ответа, но зато есть гипотезы: как появилась первая клетка — и значит, как возникла жизнь? Мир клеток, о котором рассказывается в этой книге, невероятен.Льюис Уолперт (р. 1929) — известный британский биолог, популяризатор науки, телеведущий, почетный профессор Лондонского университета.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г. № 436-ФЗ, ст. 1, п. 2, пп. 3. Возрастных ограничений нет

Льюис Уолперт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Научпоп / Образование и наука / Документальное