Случай, когда λ1
и λ2 почти равны друг другу, и случай, когда они в точности равны, физически близки друг другу. Замечу, что этот случай важен в теории измерительных приборов. Часто требуется, чтобы измерительный прибор как можно быстрее приходил в положение равновесия. Оказывается, это требование выполняется как раз тогда, когда характеристическое уравнение имеет равные корни.»В самом деле, физически ситуацию λ
1 и λ2 от ситуации λ1 ~= λ2 мы отличить не можем из-за конечной точности измерения любых величин и, в частности, коэффициентов уравнения (1) (в какой-то момент δ станет неотличимым от w0, не будучи равным ему в точности), в то время как решения (2) и (4) уравнения (1), отвечающие этим различным ситуациям, различаются весьма существенно. Перепишем решение (4) в виде, схожем с видом решения (2):x(t) = e-δt
(A + Bt). (5)Таким образом видно, что асимптотики решений (2) и (5) существенно различны: в первом случае затухающая экспонента, умноженная на осциллирующие (и, стало быть, ограниченные) синус и косинус, а во втором — такая же экспонента (δ
уже неотличимо), умноженная на растущую линейную функцию, и никаких осцилляций. Получается как бы парадокс: физически неразличимые ситуации можно различить…Разрешение этого «парадокса» на следующей странице.
Возникновение данного «парадокса» заключается в неправильном понимании того, что именно должно быть неразличимо при λ
1 ~= λ2. На деле физическое требование неразличимости ситуаций λ1 ~= λ2 и λ1 = λ2 заключается в том, что при δ —> w0 переходить друг в друга должны не общие решения (2) и (5) уравнения (1), а решения физической задачи, каковой является задача Коши о колебаниях осциллятора с данными начальными условиями х0 и х∙0. А последнее свойство как раз имеет место. Убедимся в этом.При δ
= w0 решение задачи Коши имеет вид:(6)
При δ
—> w0 общее решение должно переходить именно в него.В общем случае δ
/= w0 решение задачи Коши имеет вид:(7)
При δ
—> w0 частота осцилляций р —> 0, дробь > sin pt/p — > t, cos pt —> 1, и решение (7) переходит в (6). Видно, что хотя формально осцилляции (т. е. члены с синусом и косинусом) в решении (7) сохраняются всегда, но частота их (именно, р) становится столь малой, что на не слишком больших временах (много меньших, чем период колебаний τ = 2π/p >>1) они незаметны. Т. е. отличие δ от w0о можно заметить лишь через очень большое время, и тем большее, чем меньше эта разность, что физически разумно.
Задача:
"Возле жесткой стенки (но достаточно далеко) на горизонтальном полу лежит шар массы M, на перпендикуляре между этим шаром и стенкой лежит шар массы m (m < M). Большой шар начинает двигаться точно к стенке с какой-то скоростью. Малый шар начинает биться между стенкой и большим шаром (все соударения абсолютно жесткие и лобовые). Доказать что при M/m > оо, N/√(M/m) = —> π где N — число соударений малого шара с большим и стенкой."Утверждается что при:
M/m = 1, N = 3 (всем ежам ясно);
M/m = 100, N = 31;
M/m = 10000, N = 314;
M/m = 1000000, N = 3141,
ну и т. д.
Решение
.Рассмотрим процесс упругого соударения двух шаров. Введем некоторые обозначения. Скорость большего шара обозначим через V1
малого — через v2. Эти скорости — алгебраические величины, т. е. они могут быть любого знака, смотря по тому, в какую сторону движется шар. Так, в начальный момент времени (до соударений) V1(0) < 0, v2(0) = 0. Отношение масс шаров M/m обозначим через x.Известно, что в системе центра масс (Ц.М.) системы двух шаров столкновение заключается в том, что шары меняют свои скорости на противоположные. Поэтому обозначая скорости шаров в системе Ц.М. до столкновения через, соответственно, V~
1- и v~2-, после столкновения — соответственно, V~1+ и v~2+, а скорость самого Ц.М. — через vc, получаем:
Т.е., подставляя (1) в (2), для скоростей шаров после соударения получаем:
После столкновения шаров легкий шар (второй) еще сталкивается со стенкой. При этом скорость тяжелого шара не меняется, а скорость легкого меняется на противоположную: v2
+ |-> v2+. Таким образом, если до k-го столкновения шары имели скорости, соответственно, V1(k) и, v2(k), то перед следующим, (л + 1) — м столкновением скорости их будут:
Перепишем эти соотношения в терминах параметра х = M/m:
Станем теперь в каждый момент времени характеризовать состояние системы вектором
Получаем дин. систему:
с начальным состоянием
Значит, вообще
Обозначим матрицу через Т
и займемся ее спектральным анализом.Собственные числа Т
находятся из секулярного уравнения
Корни его суть λ± = х — 1 ± 2i√x, а собственные векторы, им отвечающие — суть векторы
Поэтому матрица Т
диагонализуется в базисе {e->±}, т. е.