Читаем Интернет-журнал "Домашняя лаборатория", 2008 №1 полностью

Этот метод получил название соматического эмбриогенеза. В отличие от развития in vivo, соматические зародыши развиваются асексуально вне зародышевого мешка и по своему внешнему виду напоминают биполярные структуры, у которых одновременно наблюдается развитие апикальных меристем стебля и корня. Согласно Стеварду, соматические зародыши проходят 3 стадии развития: глобулярную, сердцевидную, торпедовидную и в конечном итоге имеют тенденцию развития в проросток. На рисунке 3 показан конечный результат развития — растение пшеницы. Наиболее впечатляющим применением метода соматического эмбриогенеза стало размножение гвинейской масличной пальмы (Elaeis guineensis), масло которой широко используется при производстве маргарина и пищевого масла. Масличная пальма в природе не образует побегов и боковых ростков, что затрудняет ее вегетативное размножение. Культивирование черенков in vitro также невозможно. Было решено получить скопления клеток недифференцированной ткани (каллусы) путем дедифференцировки специфических тканей, а затем культивировать их до регенерации целых проростков. В первой культуральной среде каллусы из фрагментов листьев развивались в течение 90 дней, при переносе во вторую и третью культуральные среды превращались в "эмбриоиды". Эмбриоиды размножались самопроизвольно, в течение месяца число эмбриоидов возрастало втрое, а за год из 10 эмбрионов можно было получить потомство численностью 500000 растений.

Формирование эмбриоидов в культуре тканей осуществляется в несколько этапов. Сначала происходит дифференциация клеток под влиянием ауксинов, добавленных в питательную среду (2,4-Д) и превращение их в эмбриональные. Получить эмбриоиды из этих клеток можно уменьшая концентрацию ауксинов или исключая их из питательной среды. Соматические зародыши представляют собой полностью сформированные зародыши, из которых путем соответствующего капсулирования можно получить искусственные семена.

Четвертый метод клонального микроразмножения — дифференциация адвентивных почек в первичной и пересадочной каллусной ткани (рис. 23).



Рис. 23.Дифференциация придаточных почек в каллусной ткани


Практически он мало используется с целью получения посадочного материала in vitro. Это связано с тем, что при частом пассировании каллусной ткани может изменяться плоидность регенерируемых растений, наблюдаются структурные перестройки хромосом и накопление генных мутаций. Наряду с генетическими изменениями отмечаются и морфологические: низкорослость, неправильное жилкование листьев, образование укороченных междоузлий, пониженная устойчивость к болезням и вредителям. В то же время, некоторые недостатки этого метода в селекционной работе оборачиваются преимуществами. Кроме того, в некоторых случаях он является единственно возможным способом размножения растений в культуре тканей. Через каллусную культуру успешно размножаются сахарная свекла, злаковые (рис. 24), представители рода Brassica, подсолнечник и другие культуры.



Рис. 24.Формирование побегов каллусной тканью пшеницы


Оздоровление посадочного материала от вирусов

Основное преимущество клонального микроразмножения — получение генетически однородного, безвирусного посадочного материала. Предположение о возможности отсутствия вирусов в меристематических тканях больных растений впервые было высказано в 1936 г. Чунгом, а позднее, в 1943 г., и Уайтом. В 1949 г. этот факт был подтвержден экспериментально. В 1952 г. Морелю и Мартену из Национального агрономического института (Франция) удалось получить безвирусные георгины из зараженных растений.

Структурной основой используемого на практике явления служит специфика строения точки роста растений: дистальная ее часть, представленная апикальной меристемой, у разных растений имеет средний диаметр 200 мкм и высоту от 20 до 150 мкм. В нижних слоях дифференцирующиеся клетки меристемы образуют прокамбий, дающий начало пучкам проводящей системы.

Известно, что успех клонального микроразмножения зависит от меристематического экспланта. При этом отмечается закономерность: чем больше листовых зачатков и тканей, тем легче идут процессы морфогенеза, заканчивающиеся образованием целого растения. Вместе с тем, при таком развитии конуса нарастания увеличивается риск быстрой транспортировки вируса по проводящей системе. Кроме того, даже небольшой меристематический эксплант может содержать вирусы, проникшие в клетки в результате медленного распространения через плазмодесмы.

В целом, эффективность применения апикальной меристемы в качестве метода оздоровления зараженных вирусами растений может оказаться довольно низкой. Снизить риск попадания вирусов в здоровые ткани можно путем применения предварительной термо- или химиотерапии исходных растений.

Перейти на страницу:

Похожие книги