Читаем Интернет-журнал "Домашняя лаборатория", 2008 №1 полностью

В настоящее время получением и испытанием генетически модифицированных растений занимаются сотни коммерческих фирм во всем мире с совокупным капиталом более ста миллиардов долларов. В 1999 г. трансгенные растения были высажены на общей площади порядка 40 млн. га, что превышает размеры такой страны, как Великобритания. В США генетически модифицированные растения (GM Crops) составляют сейчас около 50 % посевов кукурузы и сои и более 30–40 % посевов хлопчатника. Это говорит о том, что генно-инженерная биотехнология растений уже стала важной отраслью производства продовольствия и других полезных продуктов, привлекающей значительные людские ресурсы и финансовые потоки. В ближайшие годы ожидается дальнейшее быстрое увеличение площадей, занятых трансгенными формами культурных растений.

Первая волна трансгенных растений, допущенных для практического применения, содержала дополнительные гены устойчивости (к болезням, гербицидам, вредителям, порче при хранении, стрессам).

Нынешний этап развития генетической инженерии растений получил название "метаболическая инженерия". При этом ставится задача не столько улучшить те или иные имеющиеся качества растения, как при традиционной селекции, сколько научить растение производить совершенно новые соединения, используемые в медицине, химическом производстве и других областях. Этими соединениями могут быть, например, особые жирные кислоты, полезные белки с высоким содержанием незаменимых аминокислот, модифицированные полисахариды, съедобные вакцины, антитела, интерфероны и другие "лекарственные" белки, новые полимеры, не засоряющие окружающую среду и многое, многое другое. Использование трансгенных растений позволяет наладить масштабное и дешевое производство таких веществ и тем самым сделать их более доступными для широкого потребления.


Улучшение качества запасных белков

Запасные белки основных культурных видов кодируются семейством близкородственных генов. Накопление запасных белков семян — сложный биосинтетический процесс. Первая генно-инженерная попытка улучшения свойства одного растения путем введения гена запасного белка от другого была, проведена Д. Кемпом и Т. Холлом в 1983 г. в США. Ген фазеолина бобов с помощью Ti-плазмиды был перенесен в геном подсолнечника. Результатом этого опыта было лишь химерное растение, получившее название санбин. В клетках подсолнечника были обнаружены иммунологически родственные фазеолиновые полипептиды, что подтверждало факт переноса гена между растениями, относящимися к различным семействам

Позднее ген фазеолина был передан клеткам табака: в растениях-регенерантах ген экспрессировался во всех тканях, хотя и в малых количествах. Неспецифическая экспрессия фазеолинового гена, так же как и в случае переноса его в клетки подсолнечника, сильно отличается от экспрессии этого гена в зрелых семядолях бобов, где фазеолин составлял 25–50 % от общего белка. Этот факт указывает на необходимость сохранения и других регуляторных сигналов этого гена при конструировании химерных растений и на важность контроля экспрессии генов в процессе онтогенеза растений.

Ген, кодирующий запасной белок кукурузы — зеин, после интеграции его в Т-ДНК был перенесен в геном подсолнечника следующим образом. Штаммы агробактерий, содержащие Ti-плазмиды с геном зеина, использовали для индукции опухолей в стеблях подсолнечника. Некоторые из полученных опухолей содержали мРНК, синтезируемые с генов кукурузы, что дает основание рассматривать эти результаты как первое доказательство транскрипции гена однодольного растения в двудольном. Однако присутствие зеинового белка в тканях подсолнечника не обнаружилось.

Более реальной задачей для генетической инженерии считается улучшение аминокислотного состава белков. Как известно, в запасном белке большинства злаковых наблюдается дефицит лизина, треонина, триптофана, у бобовых — метионина и цистеина. Введение в эти белки дополнительных количеств дефицитных аминокислот могло бы ликвидировать аминокислотный дисбаланс. Методами традиционной селекции удалось существенно повысить содержание лизина в запасных белках злаковых. Во всех этих случаях часть проламинов (спирторастворимые запасные белки злаковых) заменялась другими белками, содержащими много лизина. Однако у таких растении уменьшались размеры зерна и снижалась урожайность. По-видимому, проламины необходимы для формирования нормального зерна, и их замена другими белками отрицательно влияет на урожайность. Учитывая это обстоятельство, для улучшения качества запасного белка зерновых нужен такой белок, который не только отличался бы высоким содержанием лизина и треонина, но и мог полноценно заменить определенную часть проламинов при формировании зерна.

Перейти на страницу:

Похожие книги