Преобразуем это хозяйство тем же способом: OOO, 3 OOP, 3 OPP, РРР. И снова (О + Р)3 = О3 + 3 O2Р + 3 ОР2 + Р3. При четырех бросках в нашем распоряжении уже 16 случаев. Стало быть, (О + Р)4 = О4 + 4 O3Р + 6 О2Р2 + 4 ОР3 + Р4. Взглянув на все это вместе, мы увидим, что все время имеем дело с двучленом, иначе говоря, биномом О + Р, возводимым каждый раз в иную степень. Причем показатель степени бинома соответствует числу бросков. При двух бросках перед нами бином в квадрате, при трех - в кубе и так далее. Затем, обратив внимание на правые части наших равенств, увидим, что показатели степени при О и Р всякий раз указывают на заранее условленное число выпадений О или Р, а числовые коэффициенты при этих слагаемых - на число благоприятных случаев. Сумма же всех этих коэффициентов представляет собой общее число всех возможных случаев. И так как вероятность события есть отношение благоприятных случаев к числу всех возможных, то вероятность выигрыша (р) в данном случае равна отношению коэффициента соответствующего слагаемого к сумме всех коэффициентов.
- Все это очень хорошо, - мнется Фило, - но весь вопрос в том, как вычислить коэффициенты заранее? Тем более - их сумму. Допустим, игроки условились бросать монету не по восьми, а по двадцати восьми раз, - что тогда?
- Хороший вопрос, - одобряет Асмодеи. - Из него следует, что нам необходимо вывести общее правило вычисления коэффициентов для любого количества бросков, иначе говоря - для любой степени бинома: О плюс Р в степени n.
- Начнем с того, что выпишем биномы для каждой степени в отдельности, - предлагает Мате. - Ну, в нулевой степени бином, естественно, превращается в единицу.
(О+Р)0 = 1,
(О+Р)1 = О+Р,
(О+Р)2 = O2 + 2OР + P2,
(О + Р)3 = О3 + ЗО2Р + ЗОР2 + Р3,
(О + P)4 = О4 + 4O3Р + 6O2P2 + 4OР3 + Р4.
Остается выписать отдельно все коэффициенты:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
- Ой, - изумляется Фило, - ведь это же треугольник Паскаля! Прекрасно помню, что по наклонным линиям числа там расположены симметрично.
- Умница! - одобрительно зыркает на него Мате. - Теперь вам легко понять, что любой коэффициент при возведении бинома в степень есть не что иное, как некое число сочетаний. А сумма всех коэффициентов данной строки равна двум в степени бинома, то есть номера строки.
Некоторое время Фило сидит молча. Ему необходимо переварить все эти неожиданные для него совпадения. До чего все связано! То-то он никак не мог уразуметь, почему это Ферма и Паскаль, занимаясь теорией вероятностей, обратились вдруг к фигурным числам и формуле сочетаний? А сочетания, оказывается, имеют для теории вероятностей немалое значение.
- Вообще, как я погляжу, - продолжает он уже вслух, - в науке одно постоянно вытекает из другого. Это похоже на разветвленную водную систему, состоящую из тысяч ручейков, речушек и рек...
- ...которые в конце концов вливаются в одно большое озеро или море, развивает его мысль Асмодей. - Нечто подобное как раз произойдет и в науке семнадцатого века. Все ее, иногда разрозненные, а иногда и связанные между собой, течения в конце концов объединятся в научном творчестве двух величайших ученых: англичанина Исаака Ньютона и немца Готфрида Лейбница.
- Бесспорно, - поддерживает его Мате. - Возьмем механику. Все, сделанное ранее Коперником, Галилеем и Кеплером в области движения небесных тел, найдет блистательное подтверждение и завершение в законе всемирного тяготения Ньютона.
- А математика, мсье? - перебивает Асмодей. - Весь этот пристальный интерес к неделимым, к наибольшим и наименьшим величинам, над которыми ломали головы и Декарт, и Роберваль, и Ферма, и, разумеется, Паскаль, разве не приведет это в конце концов к открытию дифференциального и интегрального исчисления, которое почти одновременно и независимо друг от друга совершат Ньютон и Лейбниц?
- Не забудьте про комбинаторику, - суетится Мате, - науку о всевозможных группировках, к которым как раз относятся сочетания. Комбинаторикой усердно занимались и Ферма, и Паскаль, и Гюйгенс63, который, кстати сказать, тоже внес свою лепту в разработку теории вероятностей. Ньютон же, в свою очередь, использовал сочетания в разложении степени бинома, широко известном под названием бинома Ньютона.
Фило озабоченно хмурится.
- Бином Ньютона... Все это уж было когда-то, но только не помню, когда, - декламирует он себе под нос. - Кажется, в десятом классе...
- С вашего разрешения, не далее чем несколько минут назад, ехидничает Мате. - Потому что рассмотренные нами степени бинома имеют самое прямое отношение к формуле бинома Ньютона. Остается лишь записать ее в общем виде. - Он снова хватается за свой неизбежный блокнот. - Однако прежде всего запомните, что число сочетаний принято обозначать латинской буквой С...
- От французского "комбинезон" - "сочетание", - поясняет Асмодей.
Александр Иванович Куприн , Константин Дмитриевич Ушинский , Михаил Михайлович Пришвин , Николай Семенович Лесков , Сергей Тимофеевич Аксаков , Юрий Павлович Казаков
Детская литература / Проза для детей / Природа и животные / Малые литературные формы прозы: рассказы, эссе, новеллы, феерия / Внеклассное чтение